RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Optimization of codon usage of the envelope protein E2 gene from various genotypes of hepatitis C virus to predict the expression level in Pichia pastoris

        Arockiasamy Santhiagu,Ponniah Saravana Perumal,Stevin Wilson 한국유전학회 2016 Genes & Genomics Vol.38 No.10

        Hepatitis C virus infection (HCV) alarmingly increases worldwide; it causes chronic hepatitis, liver cirrhosis and hepatocellular carcinoma, so there is urgent need of developing effective and sufficient quantity of vaccine. HCV envelope protein E2 is the main target for developing as a vaccine candidate. Presently recombinant proteins can successfully be used as a vaccine for many diseases. This concern, it is challenging to produce sufficient quantities of many recombinant proteins from their expression hosts. One of the main factors affecting the success of expression of foreign genes in heterologous hosts is the divergence of codon usage of the target gene from that used in the expression system. In this study, we optimized the various genotypes of HCV envelope protein E2 gene according to the codon usage of Pichia pastoris and predicted the expression level. Synonymous codon usage of E2 adapted to that used by P. pastoris was estimated using the relative synonymous codon usage value (RSCU), codon adaptation index (CAI) and effective number of codon (ENC). The CAI of optimized HCV E2 sequences was enhanced from 0.638 to 0.833 and %GC was decreased from 56.05 to 44.05; this was significantly (p\0.01) different from the native sequences. Codon with RSCU value less than one was replaced with most preferred synonymous codons. The ENC values of optimized HCV E2 sequences varied from 47.00 to 47.50, with a mean value of 47.15 and an SD of 0.14. Our study suggested that, from the measured values of predicted expression level, the codon optimized HCV E2 protein could be produced in sufficient quantity in the expression host; knowledge of the codon usage patterns of E2 of various genotypes facilitate the production of a promising unique vaccine candidate for HCV.

      • Exploring codon context bias for synthetic gene design of a thermostable invertase in Escherichia coli

        Pek, H.B.,Klement, M.,Ang, K.S.,Chung, B.K.S.,Ow, D.S.W.,Lee, D.Y. IPC Science and Technology Press ; Elsevier Scienc 2015 Enzyme and microbial technology Vol.75 No.-

        Various isoforms of invertases from prokaryotes, fungi, and higher plants has been expressed in Escherichia coli, and codon optimisation is a widely-adopted strategy for improvement of heterologous enzyme expression. Successful synthetic gene design for recombinant protein expression can be done by matching its translational elongation rate against heterologous host organisms via codon optimization. Amongst the various design parameters considered for the gene synthesis, codon context bias has been relatively overlooked compared to individual codon usage which is commonly adopted in most of codon optimization tools. In addition, matching the rates of transcription and translation based on secondary structure may lead to enhanced protein folding. In this study, we evaluated codon context fitness as design criterion for improving the expression of thermostable invertase from Thermotoga maritima in Escherichia coli and explored the relevance of secondary structure regions for folding and expression. We designed three coding sequences by using (1) a commercial vendor optimized gene algorithm, (2) codon context for the whole gene, and (3) codon context based on the secondary structure regions. Then, the codon optimized sequences were transformed and expressed in E. coli. From the resultant enzyme activities and protein yield data, codon context fitness proved to have the highest activity as compared to the wild-type control and other criteria while secondary structure-based strategy is comparable to the control. Codon context bias was shown to be a relevant parameter for enhancing enzyme production in Escherichia coli by codon optimization. Thus, we can effectively design synthetic genes within heterologous host organisms using this criterion.

      • KCI등재

        Genome-wide analysis of codon usage bias patterns in an enterotoxigenic Escherichia coli F18 strain

        Ri Wei Xia,Wen Bin Bao,Xue Mei Yin,Wei Yun Qin,Guo Qiang Zhu,Sheng Long Wu 한국유전학회 2017 Genes & Genomics Vol.39 No.11

        Enterogenic Escherichia coli (ETEC) F18 strains are the main pathogenic bacteria causing severe diarrhea in humans and domestic animals. However, the information about synonymous codon usage pattern of ETEC F18 genome remains unclear. We conducted a genome-wide analysis of synonymous codon usage patterns in the ETEC F18 strain SRA: SAMN02471895. After filtering of the complete genome sequence, 4327 coding sequences were analyzed using multivariate statistical methods to calculate synonymous codon usage patterns and to evaluate the influence of various factors in shaping the codon usage. The mean GC content was 51.38%, with a slight preference for G/C-ending codons. Twenty-two codons were determined as ‘‘optimal codons”. ENC plots showed some of the genes were on or close to the expected curve, while only points with low-ENC values were below the curve. PR2 analysis showed that GC and AT were not used proportionally, suggesting major roles for mutational pressure and natural selection in shaping usage. Neutrality plots showed a significant correlation between GC12 and GC3, suggesting that mutational pressure is responsible for nucleotide composition in shaping the strength of codon usage. Translational selection was the main factor shaping the codon usage pattern of ETEC F18 genome, while other factors such as protein length, GRAVY and ARO values also influenced codon usage to some extent. We analyzed the codon usage pattern systematically and identified the factors shaping codon usage bias in the ETEC F18 genome. Such information further elucidates the mechanisms of synonymous codon usage bias and provides the basis of molecular genetic engineering and evolutionary studies.

      • SCIESCOPUSKCI등재

        Efficient Interleukin-21 Production by Optimization of Codon and Signal Peptide in Chinese Hamster Ovarian Cells

        ( Hee Jun Cho ),( Byung Moo Oh ),( Jong-tae Kim ),( Jeewon Lim ),( Sang Yoon Park ),( Yo Sep Hwang ),( Kyoung Eun Baek ),( Bo-yeon Kim ),( Inpyo Choi ),( Hee Gu Lee ) 한국미생물 · 생명공학회 2019 Journal of microbiology and biotechnology Vol.29 No.2

        Interleukin-21 is a common γ-chain cytokine that controls the immune responses of B cells, T cells, and natural killer cells. Targeting IL-21 to strengthen the immune system is promising for the development of vaccines as well as anti-infection and anti-tumor therapies. However, the practical application of IL-21 is limited by the high production cost. In this study, we improved IL-21 production by codon optimization and selection of appropriate signal peptide in CHO-K1 cells. Codon-optimized or non-optimized human IL-21 was stably transfected into CHO-K1 cells. IL-21 expression was 10-fold higher for codon-optimized than non-optimized IL-21. We fused five different signal peptides to codon-optimized mature IL-21 and evaluated their effect on IL-21 production. The best result (a 3-fold increase) was obtained using a signal peptide derived from human azurocidin. Furthermore, codon-optimized IL-21 containing the azurocidin signal peptide promoted IFN-γ secretion and STAT3 phosphorylation in NK-92 cells similar to codon-optimized IL-21 containing original signal peptide. Collectively, these results indicate that codon optimization and azurocidin signal peptides provide an efficient approach for the high-level production of IL-21 as a biopharmaceutical.

      • KCI등재

        Codon optimization of the synthetic 3-ketosphinganine reductase (3KSR) protein for enhancing sphingolipid biosynthetic enzyme expression

        Um Hyun-Ju,Shin Woo-ri,Sekhon Simranjeet Singh,Woo Sung Min,김영창,안지영,김양훈 대한독성 유전단백체 학회 2021 Molecular & cellular toxicology Vol.17 No.4

        Background Sphinganine is a key precursor for the synthesis of ceramide during sphingolipid biosynthesis in eukaryotes. In the sphinganine biosynthetic pathway, serine palmitoyltransferase (SPT) and 3-ketosphinganine reductase (3KSR) catalyze the condensation of serine and palmitoyl-CoA to form 3-ketosphinganine, and the conversation of 3-ketosphinganine to dehydrosphingosine (DHS), respectively. Objective Phytosphingosine among cosmeceutical ingredients exists primarily on the surface of the skin and serves as a potent anti-microbial and anti-inflammatory agent. To overexpressing produce phytosphingosine in bacteria, we designed and synthesized the oligonucleotide of two major genes (3KSR and SPT) involved in the biosynthesis of sphingolipid for industrial applications. Results The genes encoding SPT from the Gram-negative bacterium Sphingobium chungbukense DJ77 and 3KSR from the eukaryotic Saccharomyces cerevisiae were expressed in Escherichia coli BL21 (DE3) to produce DHS efficiently. Codon optimization was utilized for 3KSR expression in E. coli to facilitate the expression of eukaryotic proteins in the bacterial host. The synthetic 3KSR (3sKSR) protein activity was improved approximately 1.8 times compared to the wild-type 3KSR. Additionally, we successfully overexpressed the spt gene obtained from S. chungbukense DJ77, which can be used in efficient production of the sphenoid bases, with codon-optimized 3sKSR. The enhanced accumulation of DHS by SPT-3sKSR suggests that the codon-optimized enzyme (3sKSR) is more efficient for heterogeneous expression in E. coli. Conclusion Our results demonstrate that sphingolipid metabolism can be configured in engineered E. coli by the simultaneous overexpression of two key enzymes, SPT and 3sKSR, thereby producing sphingosine. Background Sphinganine is a key precursor for the synthesis of ceramide during sphingolipid biosynthesis in eukaryotes. In the sphinganine biosynthetic pathway, serine palmitoyltransferase (SPT) and 3-ketosphinganine reductase (3KSR) catalyze the condensation of serine and palmitoyl-CoA to form 3-ketosphinganine, and the conversation of 3-ketosphinganine to dehydrosphingosine (DHS), respectively. Objective Phytosphingosine among cosmeceutical ingredients exists primarily on the surface of the skin and serves as a potent anti-microbial and anti-inflammatory agent. To overexpressing produce phytosphingosine in bacteria, we designed and synthesized the oligonucleotide of two major genes (3KSR and SPT) involved in the biosynthesis of sphingolipid for industrial applications. Results The genes encoding SPT from the Gram-negative bacterium Sphingobium chungbukense DJ77 and 3KSR from the eukaryotic Saccharomyces cerevisiae were expressed in Escherichia coli BL21 (DE3) to produce DHS efficiently. Codon optimization was utilized for 3KSR expression in E. coli to facilitate the expression of eukaryotic proteins in the bacterial host. The synthetic 3KSR (3sKSR) protein activity was improved approximately 1.8 times compared to the wild-type 3KSR. Additionally, we successfully overexpressed the spt gene obtained from S. chungbukense DJ77, which can be used in efficient production of the sphenoid bases, with codon-optimized 3sKSR. The enhanced accumulation of DHS by SPT-3sKSR suggests that the codon-optimized enzyme (3sKSR) is more efficient for heterogeneous expression in E. coli. Conclusion Our results demonstrate that sphingolipid metabolism can be configured in engineered E. coli by the simultaneous overexpression of two key enzymes, SPT and 3sKSR, thereby producing sphingosine.

      • Enhanced free fatty acid production by codon-optimized Lactococcus lactis acyl-ACP thioesterase gene expression in Escherichia coli using crude glycerol

        Lee, S.,Park, S.,Park, C.,Pack, S.P.,Lee, J. IPC Science and Technology Press ; Elsevier Scienc 2014 Enzyme and microbial technology Vol.67 No.-

        Fatty acid production and composition are determined by the type of acyl-acyl carrier protein thioesterases (acyl-ACP TEs) expressed in Escherichia coli. Bacterial acyl-ACP TEs from Lactococcus lactis (SGJS47), Enterococcus faecalis (SGJS49), and Burkholderia cepacia (SGJS50) were codon-optimized and expressed in E. coli for enhanced fatty acid production. Samples were extracted at the lag, log, and stationary phases of cell growth, and gene expression levels of the codon optimized acy-ACP TEs as well as fatty acid production were monitored. At 24h after initiation of gene expression, the OPLlTE expression level and fatty acid production in SGJS47 increased up to 15.8-fold and 3.2-fold compared to the control and other recombinant strains, respectively. Additionally, in SGJS47, improvement in free fatty acid (FFA) composition, high-specificity production of short-chain fatty acids (C8, C10) and unsaturated fatty acids (C16:1) was achieved in crude glycerol medium condition. Compared with control strain, the percentage of FFAs (C8 and C10) was enhanced by approximately 16- to 21-fold, C16:1 FFA ratio increased approximately 18-fold. Observation of codon-optimized acyl-ACP TE genes expression level in E. coli may be useful for understanding mechanisms towards improving fatty acid production. Engineered strains have the potential to overproduce specific FFAs and thereby reduce the cost of fatty acid production by using industrially inexpensive carbon sources.

      • KCI등재후보

        STADIUM: Species-Specific tRNA Adaptive Index Compendium

        Yoon, Jonghwan,Chung, Yeun-Jun,Lee, Minho Korea Genome Organization 2018 Genomics & informatics Vol.16 No.4

        Due to the increasing interest in synonymous codons, several codon bias-related terms were introduced. As one measure of them, the tRNA adaptation index (tAI) was invented about a decade ago. The tAI is a measure of translational efficiency for a gene and is calculated based on the abundance of intracellular tRNA and the binding strength between a codon and a tRNA. The index has been widely used in various fields of molecular evolution, genetics, and pharmacology. Afterwards, an improved version of the index, named specific tRNA adaptation index (stAI), was developed by adapting tRNA copy numbers in species. Although a subsequently developed webserver (stAIcalc) provided tools that calculated stAI values, it was not available to access pre-calculated values. In addition to about 100 species in stAIcalc, we calculated stAI values for whole coding sequences in 148 species. To enable easy access to this index, we constructed a novel web database, named STADIUM (Species-specific tRNA adaptive index compendium). STADIUM provides not only the stAI value of each gene but also statistics based on pathway-based classification. The database is expected to help researchers who have interests in codon optimality and the role of synonymous codons. STADIUM is freely available at http://stadium.pmrc.re.kr.

      • KCI등재

        STADIUM: Species-Specific tRNA Adaptive Index Compendium

        윤종환,정연준,이민호 한국유전체학회 2018 Genomics & informatics Vol.16 No.4

        Due to the increasing interest in synonymous codons, several codon bias-related terms were introduced. As one measure of them, the tRNA adaptation index (tAI) was invented about a decade ago. The tAI is a measure of translational efficiency for a gene and is calculated based on the abundance of intracellular tRNA and the binding strength between a codon and a tRNA. The index has been widely used in various fields of molecular evolution, genetics, and pharmacology. Afterwards, an improved version of the index, named specific tRNA adaptation index (stAI), was developed by adapting tRNA copy numbers in species. Although a subsequently developed webserver (stAIcalc) provided tools that calculated stAI values, it was not available to access pre-calculated values. In addition to about 100 species in stAIcalc, we calculated stAI values for whole coding sequences in 148 species. To enable easy access to this index, we constructed a novel web database, named STADIUM (Species-specific tRNA adaptive index compendium). STADIUM provides not only the stAI value of each gene but also statistics based on pathway-based classification. The database is expected to help researchers who have interests in codon optimality and the role of synonymous codons. STADIUM is freely available at http://stadium.pmrc.re.kr.

      • SCIESCOPUSKCI등재

        Codon Optimization, Soluble Expression and Purification of PE_PGRS45 Gene from Mycobacterium tuberculosis and Preparation of Its Polyclonal Antibody Protein

        ( Tao Xu ),( Minying Li ),( Chutong Wang ),( Meili Yuan ),( Xianyou Chang ),( Zhongqing Qian ),( Baiqing Li ),( Meiqun Sun ),( Hongtao Wang ) 한국미생물 · 생명공학회 2021 Journal of microbiology and biotechnology Vol.31 No.11

        Studies have demonstrated that PE_PGRS45 is constitutively expressed under various environmental conditions (such as nutrient depletion, hypoxia, and low pH) of the in vitro growth conditions examined, indicating that PE_PGRS45 protein is critical to the basic functions of Mycobacterium tuberculosis. However, there are few reports about the biochemical function and pathogenic mechanism of PE_PGRS45 protein. The fact that this M. tuberculosis gene is not easily expressed in E. coli may be mainly due to the high content of G+C and the use of unique codons. Fusion tags are indispensable tools used to improve the soluble expression of recombinant proteins and accelerate the characterization of protein structure and function. In the present study, His6, Trx, and His6-MBP were used as fusion tags, but only MBP-PE_PGRS45 was expressed solubly. The purification using His6-MBP tag-specific binding to the Ni column was easy to separate after the tag cleavage. We used the purified PE_PGRS45 to immunize New Zealand rabbits and obtained anti- PE_PGRS45 serum. We found that the titer of polyclonal antibodies against PE_PGR45 was higher than 1:256000. The result shows that purified PE_PGRS45 can induce New Zealand rabbits to produce high-titer antibodies. In conclusion, the recombinant protein PE_PGRS45 was successfully expressed in E. coli and specific antiserum was prepared, which will be followed by further evaluation of these specific antigens to develop highly sensitive and specific diagnostic tests for tuberculosis.

      • KCI등재

        Production and Optimization of a Kiwi Pectin Methylesterase Inhibitor in Pichia pastoris GS115

        Qian Liu,Wentao Xu,Shiwen Han,Dongyan Cao,Xiaoyun He,Kunlun Huang,Xiaohong Mei 한국식품과학회 2014 Food Science and Biotechnology Vol.23 No.6

        Gene sequence coding of a kiwi pectin methylesteraseinhibitor was optimized, synthesized, and expressedin Pichia pastoris GS115 based on P. pastoris preferredcodon usage. The expression level of the recombinantprotein (kwPMEI) increased by 89.74% after codonoptimization. Expression conditions of recombinant strainswere optimized. The highest production of kwPMEI wasachieved using 0.8% sorbitol (added every 24 h), 0.05%oleic acid (added at the beginning of induction), and 0.5%methanol (added every 12 h). kwPMEI was purified usingNi2+ chelating affinity chromatography and 17 mg of theprotein was harvested from 60 mL of a culture supernatant. Activity analysis showed that kwPMEI efficiently inhibitedthe activity of different plant PMEs. High expression levelsand purification of kwPMEI will promote applications infruit and vegetable juices.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼