RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Sliding Mode Control with Fuzzy Adaptive Perturbation Compensator for 6-DOF Parallel Manipulator

        Park, Min-Kyu,Lee, Min-Cheol,Yoo, Wan-Suk The Korean Society of Mechanical Engineers 2004 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.18 No.4

        This paper proposes a sliding mode controller with fuzzy adaptive perturbation compensator(FAPC) to get a good control performance and reduce the chatter, The proposed algorithm can reduce the chattering because the proposed fuzzy adaptive perturbation compensator compensates the perturbation terms. The compensator computes the control input for compensating unmodeled dynamic terms and disturbance by using the observer-based fuzzy adaptive network(FAN) The weighting parameters of the compensate. are updated by on-line adaptive scheme in order to minimize the estimation error and the estimation velocity error of each actuator. Therefore, the combination of sliding mode control and fuzzy adaptive network gives the robust and intelligent routine to get a good control performance. To evaluate the control performance of the proposed approach, tracking control is experimentally carried out for the hydraulic motion platform which consists of a 6-DOF parallel manipulator.

      • KCI등재

        Adaptive Time Delay Compensation Process in Networked Control System

        Yong-Gil Kim,Kyung-Il Moon 한국인터넷방송통신학회 2016 Journal of Advanced Smart Convergence Vol.5 No.1

        Networked Control System (NCS) has evolved in the past decade through the advances in communication technology. The problems involved in NCS are broadly classified into two categories namely network issues due to network and control performance due to system network. The network problems are related to bandwidth allocation, scheduling and network security, and the control problems deal with stability analysis and delay compensation. Various delays with variable length occur due to sharing a common network medium. Though most delays are very less and mostly neglected, the network induced delay is significant. It occurs when sensors, actuators, and controllers exchange data packet across the communication network. Networked induced delay arises from sensor to controller and controller to actuator. This paper presents an adaptive delay compensation process for efficient control. Though Smith predictor has been commonly used as dead time compensators, it is not adaptive to match with the stochastic behavior of network characteristics. Time delay adaptive compensation gives an effective control to solve dead time, and creates a virtual environment using the plant model and computed delay which is used to compensate the effect of delay. This approach is simulated using TrueTime simulator that is a Matlab Simulink based simulator facilitates co-simulation of controller task execution in real-time kernels, network transmissions and continuous plant dynamics for NCS. The simulation result is analyzed, and it is confirmed that this control provides good performance.

      • KCI등재

        Adaptive Time Delay Compensation Process in Networked Control System

        Kim, Yong-Gil,Moon, Kyung-Il The Institute of Internet 2016 International journal of advanced smart convergenc Vol.5 No.1

        Networked Control System (NCS) has evolved in the past decade through the advances in communication technology. The problems involved in NCS are broadly classified into two categories namely network issues due to network and control performance due to system network. The network problems are related to bandwidth allocation, scheduling and network security, and the control problems deal with stability analysis and delay compensation. Various delays with variable length occur due to sharing a common network medium. Though most delays are very less and mostly neglected, the network induced delay is significant. It occurs when sensors, actuators, and controllers exchange data packet across the communication network. Networked induced delay arises from sensor to controller and controller to actuator. This paper presents an adaptive delay compensation process for efficient control. Though Smith predictor has been commonly used as dead time compensators, it is not adaptive to match with the stochastic behavior of network characteristics. Time delay adaptive compensation gives an effective control to solve dead time, and creates a virtual environment using the plant model and computed delay which is used to compensate the effect of delay. This approach is simulated using TrueTime simulator that is a Matlab Simulink based simulator facilitates co-simulation of controller task execution in real-time kernels, network transmissions and continuous plant dynamics for NCS. The simulation result is analyzed, and it is confirmed that this control provides good performance.

      • KCI등재후보

        Adaptive Time Delay Compensation Process in Networked Control System

        김용길,문경일 한국인터넷방송통신학회 2016 Journal of Advanced Smart Convergence Vol.5 No.1

        Networked Control System (NCS) has evolved in the past decade through the advances in communication technology. The problems involved in NCS are broadly classified into two categories namely network issues due to network and control performance due to system network. The network problems are related to bandwidth allocation, scheduling and network security, and the control problems deal with stability analysis and delay compensation. Various delays with variable length occur due to sharing a common network medium. Though most delays are very less and mostly neglected, the network induced delay is significant. It occurs when sensors, actuators, and controllers exchange data packet across the communication network. Networked induced delay arises from sensor to controller and controller to actuator. This paper presents an adaptive delay compensation process for efficient control. Though Smith predictor has been commonly used as dead time compensators, it is not adaptive to match with the stochastic behavior of network characteristics. Time delay adaptive compensation gives an effective control to solve dead time, and creates a virtual environment using the plant model and computed delay which is used to compensate the effect of delay. This approach is simulated using TrueTime simulator that is a Matlab Simulink based simulator facilitates co-simulation of controller task execution in real-time kernels, network transmissions and continuous plant dynamics for NCS. The simulation result is analyzed, and it is confirmed that this control provides good performance.

      • KCI등재

        Adaptive Actuator Fault Compensation and Disturbance Rejection Scheme for Spacecraft

        Zhen Li,Xin Chen 제어·로봇·시스템학회 2021 International Journal of Control, Automation, and Vol.19 No.2

        An adaptive actuator failure compensation scheme is proposed for attitude tracking control of spacecraft with unknown disturbances and uncertain actuator failures. A new feature of this adaptive control scheme is the adaptation of the failure pattern parameter estimates, as well as the failure signal parameter estimates, for direct adaptive actuator failure compensation. Based on an adaptive backstepping control design, the estimates of the disturbance parameters are used to solve the disturbance rejection problem. Without the requirement of additional fault detection mechanism, the switching function is designed to automatically locate and turn off the unknown faulty actuators by observing a control performance index. The asymptotic stability of the system output in the presence of actuator failures is rigidly proved through standard Lyapunov approach, while the other signals of the closed-loop system are guaranteed to be bounded. Simulation results verify the desired adaptive actuator failure compensation performance.

      • KCI등재

        Adaptive Time Delay Compensation Process in Networked Control System

        Yong-Gil Kim,Kyung-Il Moon 한국인터넷방송통신학회 2016 International Journal of Internet, Broadcasting an Vol.8 No.1

        Networked Control System (NCS) has evolved in the past decade through the advances in communication technology. The problems involved in NCS are broadly classified into two categories namely network issues due to network and control performance due to system network. The network problems are related to bandwidth allocation, scheduling and network security, and the control problems deal with stability analysis and delay compensation. Various delays with variable length occur due to sharing a common network medium. Though most delays are very less and mostly neglected, the network induced delay is significant. It occurs when sensors, actuators, and controllers exchange data packet across the communication network. Networked induced delay arises from sensor to controller and controller to actuator. This paper presents an adaptive delay compensation process for efficient control. Though Smith predictor has been commonly used as dead time compensators, it is not adaptive to match with the stochastic behavior of network characteristics. Time delay adaptive compensation gives an effective control to solve dead time, and creates a virtual environment using the plant model and computed delay which is used to compensate the effect of delay. This approach is simulated using TrueTime simulator that is a Matlab Simulink based simulator facilitates co-simulation of controller task execution in real-time kernels, network transmissions and continuous plant dynamics for NCS. The simulation result is analyzed, and it is confirmed that this control provides good performance.

      • KCI등재

        High-precision Position Tracking Control of Electro-hydraulic Servo Systems Based on an Improved Structure and Desired Compensation

        Wei Shen,Xinyu Liu,Xiaoyu Su 제어·로봇·시스템학회 2021 International Journal of Control, Automation, and Vol.19 No.11

        How to improve the position tracking accuracy of electro-hydraulic servo system is a hot issue today. Full state feedback control has received widespread attention for its ability to significantly improve control performance,however, its practical application range is limited in view of the large influence of measurement noise. In terms of this issue, we propose an adaptive robust controller based on improved structure and desired compensation. Firstly,to reduce the impact of measurement noise, the actual state value is substituted by the corresponding desired value in the controller design based on model compensation and the adaptive model compensator. Then, we introducea new auxiliary variable into the controller to optimize its structure. In addition, nonlinear robust control laws are integrated in the controller to balance unstructured uncertainties. Simulation analysis shows that the proposedcontrol strategy not only achieves the asymptotic tracking when parameter perturbation exists, but also ensures a specified transient response and final tracing precision under the combined influence of structured and unstructureduncertainties. The results indicate that the control strategy has good control accuracy as well as strong robustness

      • KCI등재

        Adaptive Robust Torque Control of Electric Load Simulator with Strong Position Coupling Disturbance

        Xingjian Wang,Shaoping Wang,Bin Yao 제어·로봇·시스템학회 2013 International Journal of Control, Automation, and Vol.11 No.2

        Electric load simulator (ELS) is an important equipment to exert aerodynamic load to actuation system according to flight condition. The key issue of ELS is how to eliminate the influence of extra torque caused by actuation system, parametric uncertainties and uncertain nonlinearities. In order to overcome these difficulties, this paper proposes a powerful model-based adaptive robust torque control (ARTC) algorithm which transfers external disturbance elimination problem to a performance-oriented problem under uncertainties and nonlinearities. A discontinuous projection-based online parameter adaptation is employed to reduce the effect of various parameter uncertainties. Instead of discontinuous friction model, a continuous friction model based on smooth shape function is applied for friction compensation. The estimated velocity of actuator is utilized in ARTC controller for eliminating extra torque. The backstepping design via adaptive robust control Lyapunov function is employed to construct ARTC control law for ELS. Extensive comparative results indicate that the proposed ARTC controller is effective to achieve a guaranteed transient as well as final tracking accuracy in the presence of both parametric uncertainties and uncertain nonlinearities.

      • Eigenspace-based MLLR에 기반한 고속 화자적응 및 환경보상

        송화전,김형순,Song Hwa-Jeon,Kim Hyung-Soon 대한음성학회 2006 말소리 Vol.58 No.-

        Maximum likelihood linear regression (MLLR) adaptation experiences severe performance degradation with very tiny amount of adaptation data. Eigenspace- based MLLR, as an alternative to MLLR for fast speaker adaptation, also has a weak point that it cannot deal with the mismatch between training and testing environments. In this paper, we propose a simultaneous fast speaker and environment adaptation based on eigenspace-based MLLR. We also extend the sub-stream based eigenspace-based MLLR to generalize the eigenspace-based MLLR with bias compensation. A vocabulary-independent word recognition experiment shows the proposed algorithm is superior to eigenspace-based MLLR regardless of the amount of adaptation data in diverse noisy environments. Especially, proposed sub-stream eigenspace-based MLLR with bias compensation yields 67% relative improvement with 10 adaptation words in 10 dB SNR environment, in comparison with the conventional eigenspace-based MLLR.

      • KCI등재

        적응 역기전력 추정기와 개선된 순시 무효전력 보상기를 이용한 돌극형 영구자석 전동기의 센서리스 제어

        이준민(Joonmin Lee),홍주훈(Joo-Hoon Hong),김영석(Young-Seok Kim) 대한전기학회 2016 전기학회논문지 Vol.65 No.5

        This paper propose a sensorless control system of IPMSM with a adaptive back-EMF estimator and improved instantaneous reactive power compensator. A saliency-based back-EMF is estimated by using the adaptive algorithm. The estimated back-EMF is inputted to the phase locked loop(PLL) and the improved instantaneous reactive power(IRP) compensator for estimating the position/speed of the rotor and compensating the error components between the estimated and the actual position, respectively. The stability of the proposed system is achieved through Popov’s hyper stability criteria. The validity of proposed algorithm is verified by the simulations and experiments.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼