RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • 혐기성소화조 투입 유기물 성상변화에 따른 혐기성 소화효율 연구

        김영신 ( Yeong-shin Kim ),조준연 ( Jun-yeon Cho ),배재근 ( Chae-gun Phae ) 한국폐기물자원순환학회(구 한국폐기물학회) 2016 한국폐기물자원순환학회 추계학술발표논문집 Vol.2016 No.-

        우리나라는 4계절이 뚜렷하여 안정적인 중온소화를 진행하기에 환경적 어려움이 있다. 혐기성 소화조의 안정적인 소화를 위하여 가온 에너지는 필수적인 요소이다. 이를 위해 본 연구에서는 이러한 환경에 적합한 소형혐기성 시설의 개발을 위하여 고농도 유기성 폐기물인 돈분뇨와 음식물류폐기물을 전처리 과정 없이 고액분리만을 통하여 액상의 고농도유기물만을 혐기성소화조에서 에너지원인 바이오가스를 생산하는 Pilot Plant의 성능과 소화효율을 분석하였다. 혐기성 소화조의 가온을 위하여 겉에는 호기성 소화조를 설치하여 호기 발효열을 혐기성 소화 가온 에너지로 이용 가능하도록 설계하였다. 이 호기성 소화조에서는 음식물류폐기물을 이용, 호기성 분해를 통해 퇴비를 생산하였으며, 이 과정 중 발생한 분해열(최대 75℃)을 이용, 혐기성 소화조를 가온하였다. 혐기성 소화의 성분 변화에 따른 바이오가스를 분석하기 위하여 혐기성소화조에 투입되는 유기물(VS)농도, 원료배합(돈분뇨 중 분성분이 30%, 뇨성분이 70%) 등 운전조건의 변화에 따른 유기물(VS) 제거율, CODcr 제거율, 바이오가스 생산량 및 메탄농도, 유기물용적부하에 따른 바이오가스 발생량 등을 분석 하였다. 음식물류 폐기물과 돈분뇨 혼합비에 따라 CASE 1, CASE 2, CASE 3로 분류하였으며, CASE 1의 비율은 음식물류 폐기물 8kg과 돈분뇨 20L, CASE 2 음식물류 폐기물 10kg과 돈분뇨 20L로 진행하였다. 분석결과 호기성 발효조의 평균 온도는 계절에 관계없이 50℃~70℃로 나타났으며, 호기성 발효조의 발효열이 높을수록 혐기성 소화조의 온도 또한 증가하는 경향이 나타났다. 이 결과 혐기성 소화조의 온도는 평균적으로 38℃로 중온소화가 가능한 것으로 확인되었다. 혐기 소화의 경우 투입원료의 유기물(VS)량에 따른 바이오가스 발생량은 CASE1에서 유기물(VS)은 평균 6.09%으로 분석되었으며, 이에 따른 바이오가스 발생량은 0.29~0.31㎥/day로 나타났다. CASE 2는 유기물(VS)평균 농도가 7.7%, 바이오가스 발생량이 0.325㎥/day로 나타났다. CASE1, 2 각각의 CODcr, 유기물(VS) 평균 제거율은 CASE 1이 56%, 76.61%, CASE2가 62%, 81.86%로 분석되었다. 메탄 함유량 또한 60~77%로 측정되어 연료로써의 가치가 확인되었다. 본 연구를 통하여 호기성 산화열을 혐기성 소화의 가온 에너지로서 사용하는 방식의 상용화 가능성을 확인할 수 있었으며, 현재 운영하는 혐기성 소화 시설만이 아닌 마을단위의 유기성 폐기물을 처리할 수 있는 소규모 시설로서도 운영이 가능할 것으로 보이며, 이에 따라 좀 더 효율적인 유기성 폐기물의 처리를 가능하게 할 수 있을 것으로 기대된다.

      • 혐기성소화조 투입 유기물 성상변화에 따른 혐기성 소화효율 연구

        김영신,조준연,배재근 한국폐기물자원순환학회 2016 한국폐기물자원순환학회 학술대회 Vol.2016 No.11

        우리나라는 4계절이 뚜렷하여 안정적인 중온소화를 진행하기에 환경적 어려움이 있다. 혐기성 소화조의 안정적인 소화를 위하여 가온 에너지는 필수적인 요소이다. 이를 위해 본 연구에서는 이러한 환경에 적합한 소형 혐기성 시설의 개발을 위하여 고농도 유기성 폐기물인 돈분뇨와 음식물류폐기물을 전처리 과정 없이 고액분리만을 통하여 액상의 고농도유기물만을 혐기성소화조에서 에너지원인 바이오가스를 생산하는 Pilot Plant의 성능과 소화효율을 분석하였다. 혐기성 소화조의 가온을 위하여 겉에는 호기성 소화조를 설치하여 호기 발효열을 혐기성 소화 가온 에너지로 이용 가능하도록 설계하였다. 이 호기성 소화조에서는 음식물류폐기물을 이용, 호기성 분해를 통해 퇴비를 생산하였으며, 이 과정 중 발생한 분해열(최대 75℃)을 이용, 혐기성 소화조를 가온하였다. 혐기성 소화의 성분 변화에 따른 바이오가스를 분석하기 위하여 혐기성소화조에 투입되는 유기물(VS)농도, 원료배합(돈분뇨 중 분성분이 30%, 뇨성분이 70%) 등 운전조건의 변화에 따른 유기물(VS) 제거율, CODcr 제거율, 바이오가스 생산량 및 메탄농도, 유기물용적부하에 따른 바이오가스 발생량 등을 분석 하였다. 음식물류 폐기물과 돈분뇨 혼합비에 따라 CASE 1, CASE 2, CASE 3로 분류하였으며, CASE 1의 비율은 음식물류 폐기물 8kg과 돈분뇨 20L, CASE 2 음식물류 폐기물 10kg과 돈분뇨 20L로 진행하였다. 분석결과 호기성 발효조의 평균 온도는 계절에 관계없이 50℃~70℃로 나타났으며, 호기성 발효조의 발효열이 높을수록 혐기성 소화조의 온도 또한 증가하는 경향이 나타났다. 이 결과 혐기성 소화조의 온도는 평균적으로 38℃로 중온소화가 가능한 것으로 확인되었다. 혐기 소화의 경우 투입원료의 유기물(VS)량에 따른 바이오가스 발생량은 CASE1에서 유기물(VS)은 평균 6.09%으로 분석되었으며, 이에 따른 바이오가스 발생량은 0.29~0.31㎥/day로 나타났다. CASE 2는 유기물(VS)평균 농도가 7.7%, 바이오가스 발생량이 0.325㎥/day로 나타났다. CASE1, 2 각각의 CODcr, 유기물(VS) 평균 제거율은 CASE 1이 56%, 76.61%, CASE2가 62%, 81.86%로 분석되었다. 메탄 함유량 또한 60~77%로 측정되어 연료로써의 가치가 확인되었다. 본 연구를 통하여 호기성 산화열을 혐기성 소화의 가온 에너지로서 사용하는 방식의 상용화 가능성을 확인할 수 있었으며, 현재 운영하는 혐기성 소화 시설만이 아닌 마을단위의 유기성 폐기물을 처리할 수 있는 소규모 시설로서도 운영이 가능할 것으로 보이며, 이에 따라 좀 더 효율적인 유기성 폐기물의 처리를 가능하게 할 수 있을 것으로 기대된다.

      • 혐기성소화조 투입 유기물 성상변화에 따른 혐기성 소화효율 연구

        김영신 ( Yeong-shin Kim ),조준연 ( Jun-yeon Cho ),배재근 ( Chae-gun Phae ) 한국폐기물자원순환학회(구 한국폐기물학회) 2016 한국폐기물자원순환학회 심포지움 Vol.2016 No.2

        우리나라는 4계절이 뚜렷하여 안정적인 중온소화를 진행하기에 환경적 어려움이 있다. 혐기성 소화조의 안정적인 소화를 위하여 가온 에너지는 필수적인 요소이다. 이를 위해 본 연구에서는 이러한 환경에 적합한 소형혐기성 시설의 개발을 위하여 고농도 유기성 폐기물인 돈분뇨와 음식물류폐기물을 전처리 과정 없이 고액분리만을 통하여 액상의 고농도유기물만을 혐기성소화조에서 에너지원인 바이오가스를 생산하는 Pilot Plant의 성능과 소화효율을 분석하였다. 혐기성 소화조의 가온을 위하여 겉에는 호기성 소화조를 설치하여 호기 발효열을 혐기성 소화 가온 에너지로 이용 가능하도록 설계하였다. 이 호기성 소화조에서는 음식물류폐기물을 이용, 호기성 분해를 통해 퇴비를 생산하였으며, 이 과정 중 발생한 분해열(최대 75℃)을 이용, 혐기성 소화조를 가온하였다. 혐기성 소화의 성분 변화에 따른 바이오가스를 분석하기 위하여 혐기성소화조에 투입되는 유기물(VS)농도, 원료배합(돈분뇨 중 분성분이 30%, 뇨성분이 70%) 등 운전조건의 변화에 따른 유기물(VS) 제거율, CODcr 제거율, 바이오가스 생산량 및 메탄농도, 유기물용적부하에 따른 바이오가스 발생량 등을 분석 하였다. 음식물류 폐기물과 돈분뇨 혼합비에 따라 CASE 1, CASE 2, CASE 3로 분류하였으며, CASE 1의 비율은 음식물류 폐기물 8kg과 돈분뇨 20L, CASE 2 음식물류 폐기물 10kg과 돈분뇨 20L로 진행하였다. 분석결과 호기성 발효조의 평균 온도는 계절에 관계없이 50℃~70℃로 나타났으며, 호기성 발효조의 발효열이 높을수록 혐기성 소화조의 온도 또한 증가하는 경향이 나타났다. 이 결과 혐기성 소화조의 온도는 평균적으로 38℃로 중온소화가 가능한 것으로 확인되었다. 혐기 소화의 경우 투입원료의 유기물(VS)량에 따른 바이오가스 발생량은 CASE1에서 유기물(VS)은 평균 6.09%으로 분석되었으며, 이에 따른 바이오가스 발생량은 0.29~0.31㎥/day로 나타났다. CASE 2는 유기물(VS)평균 농도가 7.7%, 바이오가스 발생량이 0.325㎥/day로 나타났다. CASE1, 2 각각의 CODcr, 유기물(VS) 평균 제거율은 CASE 1이 56%, 76.61%, CASE2가 62%, 81.86%로 분석되었다. 메탄 함유량 또한 60~77%로 측정되어 연료로써의 가치가 확인되었다. 본 연구를 통하여 호기성 산화열을 혐기성 소화의 가온 에너지로서 사용하는 방식의 상용화 가능성을 확인할 수 있었으며, 현재 운영하는 혐기성 소화 시설만이 아닌 마을단위의 유기성 폐기물을 처리할 수 있는 소규모 시설로서도 운영이 가능할 것으로 보이며, 이에 따라 좀 더 효율적인 유기성 폐기물의 처리를 가능하게 할 수 있을 것으로 기대된다.

      • 하수슬러지의 저온 생물전기화학 혐기성 소화성능

        송영채 ( Qing Feng ) 한국폐기물자원순환학회(구 한국폐기물학회) 2015 한국폐기물자원순환학회 춘계학술발표논문집 Vol.2015 No.-

        유기성폐기물을 안정화시키는 동시에 바이오가스를 회수하는 혐기성소화기술은 지난 백여년 이상동안 많은 연구자들에 의하여 연구되어 온 전통기술로서 최근 지구온난화 문제가 전 세계적인 이슈로 부상하면서 새롭게 조명 받고 있다. 그러나, 혐기성소화기술은 여전히 메탄생성균의 느린 성장속도와 환경변화에 대한 민감성에 기인하여 20일 이상의 긴 체류시간을 필요로 하고 유기물 감량율과 메탄생성율이 높지 않다는 단점이 있다. 또한, 혐기성소화조는 성능을 유지시키기 위하여 중온(35℃) 또는 고온(55℃) 조건에서 운전하게 되는데, 소화조의 온도를 일정하게 유지시키기 위하여 가온하는데 많은 에너지를 필요로 한다. 그러나, 혐기성소화조를 저온에서 운전하게 될 경우 가온에 필요한 에너지를 절약할 수 있지만 생화학반응속도가 감소하여 소화성능이 크게 저하하는 결과로 이어지게 된다. 한편, 생물전기화학 혐기성소화(bioelectrochemical anaerobic digestion)는 재래식 혐기성소화가 가진 단점들을 극복하기 위하여 기존의 혐기성소화조에 산화전극과 환원전극으로 이루어진 생물전기화학장치를 설치하고 전극들에 일정한 전위를 인가함으로서 유기물의 혐기성분해 반응을 촉진시키는 기술이다. 본 연구에서는 하수슬러지를 대상으로 25℃의 저온조건에서 생물전기화학 혐기성소화성능을 평가하고, 중온조건에서의 결과와 비교하였다. 또한, 저온소화 성능에 대한 철염의 영향을 조사하였다. 본 연구는 교반기가 설치된 유효용량 12L의 재래식 혐기성소화조에 산화전극과 환원전극을 설치한 생물전기화학 혐기성소화조를 이용하여 수행하였다. 이때 산화전극은 흑연직물섬유의 표면에 탄소나노튜브를 전기영동전착법으로 고정시킨 것을 사용하였으며, 환원전극은 흑연직물섬유의 표면에 탄소나노튜브와 니켈을 동시에 고정시킨 것을 사용하였다. 준비된 생물전기화학 혐기성소화조의 산화전극과 환원전극 사이에는 외부의 직류전원을 이용하여 0.3V의 전압을 인가하였다. 초기운전을 위하여 S 하수처리장 혐기성소화조로부터 채취한 혐기성슬러지를 식종하였으며, Y 하수종말처리장에서 채취한 하수슬러지를 1일 1회 정량 주입하여 수리학적 체류시간은 20일로 유지하였다. 생물전기화학 혐기성소화조를 운전하는 동안 pH, VFA, COD 및 VS 그리고 바이오가스발생량 및 메탄함량과 전류의 변화 등을 관측하였다. 생물전기화학 혐기성소화조를 35℃의 중온에서 운전한 경우 초기운전기간 이후 정상상태에 도달하였을 때 비메탄발생율과 VS 감량은 각각 0.412L CH4/L/d 및 72.5%로서 대단히 우수한 소화성능을 보였다. 그러나, 생물전기화학 혐기성소화조를 저온에서 운전하였을 때 메탄발생량과 유기물 감량율은 전차감소하였으며, 정상상태에서 비메탄발생율과 VS 감량은 각각 0.354 L CH4/L/d 및 61.3%로서 중온조건의 85% 정도 소화성능을 보였다. 그러나, 유입슬러지에 철염을 첨가하여 생물전기화학 혐기성소화조를 운전하였을 때 메탄발생량과 VS 감량율은 빠르게 회복하였으며, 비메탄발생량과 VS 감량은 각각 403L CH4/L/d 및 69.8%로서 중온성능의 98% 가량의 성능을 보였다.

      • 하수슬러지의 저온 생물전기화학 혐기성 소화성능

        송영채,QING FENG 한국폐기물자원순환학회 2015 한국폐기물자원순환학회 학술대회 Vol.2015 No.05

        유기성폐기물을 안정화시키는 동시에 바이오가스를 회수하는 혐기성소화기술은 지난 백여년 이상동안 많은 연구자들에 의하여 연구되어 온 전통기술로서 최근 지구온난화 문제가 전 세계적인 이슈로 부상하면서 새롭게 조명 받고 있다. 그러나, 혐기성소화기술은 여전히 메탄생성균의 느린 성장속도와 환경변화에 대한 민감성에 기인하여 20일 이상의 긴 체류시간을 필요로 하고 유기물 감량율과 메탄생성율이 높지 않다는 단점이 있다. 또한, 혐기성소화조는 성능을 유지시키기 위하여 중온(35℃) 또는 고온(55℃) 조건에서 운전하게 되는데, 소화조의 온도를 일정하게 유지시키기 위하여 가온하는데 많은 에너지를 필요로 한다. 그러나, 혐기성소화조를 저온에서 운전하게 될 경우 가온에 필요한 에너지를 절약할 수 있지만 생화학반응속도가 감소하여 소화성능이 크게 저하하는 결과로 이어지게 된다. 한편, 생물전기화학 혐기성소화(bioelectrochemical anaerobic digestion)는 재래식 혐기성소화가 가진 단점들을 극복하기 위하여 기존의 혐기성소화조에 산화전극과 환원전극으로 이루어진 생물전기화학장치를 설치하고 전극들에 일정한 전위를 인가함으로서 유기물의 혐기성분해 반응을 촉진시키는 기술이다. 본 연구에서는 하수슬러지를 대상으로 25℃의 저온조건에서 생물전기화학 혐기성소화성능을 평가하고, 중온조건에서의 결과와 비교하였다. 또한, 저온소화 성능에 대한 철염의 영향을 조사하였다. 본 연구는 교반기가 설치된 유효용량 12L의 재래식 혐기성소화조에 산화전극과 환원전극을 설치한 생물전기화학 혐기성소화조를 이용하여 수행하였다. 이때 산화전극은 흑연직물섬유의 표면에 탄소나노튜브를 전기영동전착법으로 고정시킨 것을 사용하였으며, 환원전극은 흑연직물섬유의 표면에 탄소나노튜브와 니켈을 동시에 고정시킨 것을 사용하였다. 준비된 생물전기화학 혐기성소화조의 산화전극과 환원전극 사이에는 외부의 직류전원을 이용하여 0.3V의 전압을 인가하였다. 초기운전을 위하여 S 하수처리장 혐기성소화조로부터 채취한 혐기성슬러지를 식종하였으며, Y 하수종말처리장에서 채취한 하수슬러지를 1일 1회 정량 주입하여 수리학적 체류시간은 20일로 유지하였다. 생물전기화학 혐기성소화조를 운전하는 동안 pH, VFA, COD 및 VS 그리고 바이오가스발생량 및 메탄함량과 전류의 변화 등을 관측하였다. 생물전기화학 혐기성소화조를 35℃의 중온에서 운전한 경우 초기운전기간 이후 정상상태에 도달하였을 때 비메탄발생율과 VS 감량은 각각 0.412L CH4/L/d 및 72.5%로서 대단히 우수한 소화성능을 보였다. 그러나, 생물전기화학 혐기성소화조를 저온에서 운전하였을 때 메탄발생량과 유기물 감량율은 전차감소하였으며, 정상상태에서 비메탄발생율과 VS 감량은 각각 0.354 L CH4/L/d 및 61.3%로서 중온조건의 85% 정도 소화성능을 보였다. 그러나, 유입슬러지에 철염을 첨가하여 생물전기화학 혐기성소화조를 운전하였을 때 메탄발생량과 VS 감량율은 빠르게 회복하였으며, 비메탄발생량과 VS 감량은 각각 403L CH4/L/d 및 69.8%로서 중온성능의 98% 가량의 성능을 보였다.

      • 하수슬러지처리를 위한 생물전기화학 혐기성소화공정의 성능에 대한 수리학적 체류시간의 영향

        송영채,풍경,우정희 한국폐기물자원순환학회(구 한국폐기물학회) 2014 한국폐기물자원순환학회 춘계학술발표논문집 Vol.2014 No.-

        고농도의 유기오염물질을 안정화시키는 동시에 메탄가스를 회수할 수 있는 혐기성소화는 지난 백여년 이상 동안 많은 연구자들에 의하여 연구되어 온 전통기술로서 최근 지구온난화 문제가 전 세계적인 이슈로 급부상하면서 새롭게 조명받고 있다. 그러나, 혐기성소화기술은 여전히 메탄생성균의 느린 성장속도와 환경인자에 대한 민감성에 기인하여 상대적으로 20일 이상의 긴 체류시간이 필요하고 유기물감량율이 낮으며, 운전조건이 까다롭다는 단점을 지니고 있다. 최근들어 환경생물전기화학자들에 의해 연구되기 시작한 생물전기화학기술(Bioelectrochemical technology)을 혐기성소화공정에 활용하면 전통적인 혐기성소화기술의 단점들이 상당 부분 극복 가능하다. 혐기성소화공정에 활용하는 생물전기화학기술은 소화조 내에 설치하는 산화전극과 환원전극으로 이루어지며, 산화전극과 환원전극 사이에 외부회로를 구성하고 일정한 전위차가 유지되도록 외부전원을 이용하여 전압을 인가한 미생물전해전지(Microbial electrolysis cells, MECs)의 형태이다. 혐기성소화조에서 전기적으로 활성을 가진 미생물들은 유기물이나 유기산을 속도로 분해하여 전자를 산화전극으로 공급하며, 환원전극의 표면에서는 수소나 메탄과 같은 바이오가스 생성반응이 일어나게 되는데 산화전극 및 환원전극에서의 반응은 인가전압에 의해서 촉진된다. 본 연구에서는 생물전기화학기술을 혐기성소화에 활용한 생물전기화학 혐기성소화공정(Bioelectrochemical anaerobic process)의 수리학적 체류시간이 하수슬러지의 혐기성소화성능에 미치는 영향을 평가하였다. 본 연구에서는 교반기가 설치된 유효부피 12L의 원통형 혐기성 소화조에 산화전극과 환원전극을 각각 설치하여 생물전기화학 혐기성소화조를 준비하였으며, 산화전극과 환원전극 사이의 인가전압은 0.4V로 고정하였다. 이 때 혐기성소화조에 설치된 산화전극과 환원전극은 흑연직물섬유의 표면에 탄소나노튜브를 전기영동전착법(Electrophoretic deposition)으로 고정하여 제작하였다. 생물전기화학 혐기성소화조의 초기운전을 위하여 S 하수처리장 혐기성소화조로부터 슬러지를 채취하여 식종하였으며, Y 하수종말처리장에서 채취한 하수슬러지를 1일 1회 정량 주입하여 수리학적 체류시간을 유지하였다. 소화조를 운전하는 동안 총 바이오가스발생량 및 메탄 함량, 유기물 감량율과 전류의 변화 등을 관측하여 10~20일의 범위에서 수리학적 체류시간에 따른 생물전기화학 혐기성소화공정의 성능을 비교평가 하였다. 생물전기화학 혐기성소화조의 VS 감량율은 HRT 20일의 경우 약 70%로서 전통적이 혐기성소화조와 비교하였을 때 큰 값을 보였으나, HRT 15일에서는 약 65%로서 수리학적 체류시간에 영향을 받았다. 바이오가스의 메탄함량(%)은 약 77±2%로서 수리학적 체류시간에 따른 영향이 거의 없었으나, 메탄발생량은 수리학적 체류시간의 감소에 따른 유기물 부하율 증가에 비례하여 증가하였다. 그러나, 외부회로에서 관측한 전류와 메탄가스 발생량으로부터 계산한 쿨롱효율은 수리학적 체류시간이 감소에 따라 오히려 증가하였다. 유기물제거율, 바이오가스의 메탄함량 및 메탄가스발생량으로 평가한 생물전기화학 혐기성소화공정의 안정성은 수리학적 체류시간을 10-20일에서 대단히 높은 것으로 평가되었다.

      • 생물전기화학장치가 설치된 혐기성소화조를 이용한 PTA(Purified Terephthalic Acid) 폐수의 처리특성 평가

        송영채,풍경,이재원 한국폐기물자원순환학회(구 한국폐기물학회) 2014 한국폐기물자원순환학회 추계학술발표논문집 Vol.2014 No.-

        혐기성소화기술은 지난 백여년 이상동안 많은 연구자들에 의하여 연구되어 온 전통기술로서 최근 지구온난화 문제가 전 세계적인 이슈로 부상하면서 새롭게 조명 받고 있다. 그러나, 혐기성소화기술은 여전히 메탄생성균의 느린 성장속도와 환경인자에 대한 민감성에 기인하여 20일 이상의 긴 체류시간을 필요로 하고 유기물감량율이 낮으며, 운전조건이 까다롭다는 단점을 지니고 있다. 최근 들어 환경생물전기화학자들에 의해 연구되기 시작한 생물전기화학기술(Bioelectrochemical technology)을 혐기성소화공정에 활용하면 메탄생성반응과 가수 분해반응을 크게 촉진시킬 수 있어 전통적인 혐기성소화기술의 단점들이 상당 부분 극복할 수 있다. 혐기성소화공정에 활용하는 생물전기화학기술은 소화조 내에 설치하는 산화전극과 환원전극으로 이루어지며, 외부회로에 의하여 서로 연결된 산화전극과 환원전극 사이에 외부전원을 이용하여 전압을 인가하여 일정한 전위차가 유지되도록 한 미생물전해전지(Microbial electrolysis cells, MECs)의 형태이다. 혐기성소화조에서 전기적으로 활성을 가진 미생물들은 유기물이나 유기산을 빠른 속도로 분해하여 전자와 양성자를 생성하며, 전자는 산화전극으로 전달된 뒤 외부회로를 통하여 환원전극으로 이동한다. 환원전극의 표면에서는 전자와 양성자 또는 전자와 양성자 및 이산화탄소가 반응하여 수소나 메탄과 같은 바이오가스가 생성된다. 본 연구에서는 완전혼합형 혐기성소화조에 생물전기화학장치가 설치된 반응조 (Bioelectrochemical anaerobic digestion, BEAD)을 이용하여 수리학적 체류시간에 따른 PTA 폐수의 처리특성을 평가하였다. PTA (purified terephthalic acid) 폐수는 A 산업에서 채취한 것으로서 COD 값이 약 6,000-8,000mg/L였으며, 주요 구성성분은 terephthalic acid, p-toluic acid, benzoic acid, acetic acid 등이었으며, pH는 5-6이었다. 먼저, 실험에 사용한 산화전극 및 환원전극은 흑연직물 섬유의 표면에 탄소나노튜브를 초음파분산법으로 고정하여 제작하였다. 교반기가 설치된 유효부피 15L의 원통형 혐기성 소화조에 산화전극과 환원전극을 각각 설치하였으며, 산화전극과 환원전극 사이에 0.3V의 전압을 인가하였다. 하수슬러지를 이용하여 운전 중인 생물전기화학장치가 설치된 혐기성소화조에서 유출 슬러지를 초기 운전을 위한 식종균으로 사용하였으며, PTA 폐수를 1일 1회 정량 주입하여 수리학적 체류시간을 20일로 유지하였다. 소화조가 안정화되었을 때 수리학적 체류시간을 단계적으로 10일, 5일, 2.5일 그리고 1.25일 까지 변화시키면서 총 바이오가스발생량 및 메탄함량, COD 제거율과 전류의 변화 등을 관측하였다. 생물전기화학장치가 설치된 혐기성소화조의 COD 감량율은 수리학적 체류시간에 관계없이 약 60%로서 보였으며, 바이오가스의 메탄함량(%)은 80% 이상을 유지하였다. 그러나, 메탄발생량은 수리학적 체류시간의 감소에 따른 유기물 부하율 증가에 비례하여 증가하였다. 그러나, 외부회로의 전류와 메탄가스 발생량으로부터 계산한 쿨롱효율은 수리학적 체류시간이 감소에 따라 오히려 증가하였다. COD 제거율, 바이오가스의 메탄함량 및 메탄가스발생량으로 평가한 생물전기화학장치가 설치된 혐기성소화공정의 안정성은 수리학적 체류시간 20일부터 1.25일의 범위에서 영향을 받지 않았다.

      • 생물전기화학장치가 설치된 혐기성소화조를 이용한 PTA(Purified Terephthalic Acid) 폐수의 처리특성 평가

        송영채,풍경,이재원 한국폐기물자원순환학회 2014 한국폐기물자원순환학회 학술대회 Vol.2014 No.11

        혐기성소화기술은 지난 백여년 이상동안 많은 연구자들에 의하여 연구되어 온 전통기술로서 최근 지구온난화 문제가 전 세계적인 이슈로 부상하면서 새롭게 조명 받고 있다. 그러나, 혐기성소화기술은 여전히 메탄생성균의 느린 성장속도와 환경인자에 대한 민감성에 기인하여 20일 이상의 긴 체류시간을 필요로 하고 유기물감량율이 낮으며, 운전조건이 까다롭다는 단점을 지니고 있다. 최근 들어 환경생물전기화학자들에 의해 연구되기 시작한 생물전기화학기술(Bioelectrochemical technology)을 혐기성소화공정에 활용하면 메탄생성반응과 가수분해반응을 크게 촉진시킬 수 있어 전통적인 혐기성소화기술의 단점들이 상당 부분 극복할 수 있다. 혐기성소화공정에 활용하는 생물전기화학기술은 소화조 내에 설치하는 산화전극과 환원전극으로 이루어지며, 외부회로에 의하여 서로 연결된 산화전극과 환원전극 사이에 외부전원을 이용하여 전압을 인가하여 일정한 전위차가 유지되도록 한 미생물전해전지(Microbial electrolysis cells, MECs)의 형태이다. 혐기성소화조에서 전기적으로 활성을 가진 미생물들은 유기물이나 유기산을 빠른 속도로 분해하여 전자와 양성자를 생성하며, 전자는 산화전극으로 전달된 뒤 외부회로를 통하여 환원전극으로 이동한다. 환원전극의 표면에서는 전자와 양성자 또는 전자와 양성자 및 이산화탄소가 반응하여 수소나 메탄과 같은 바이오가스가 생성된다. 본 연구에서는 완전혼합형 혐기성소화조에 생물전기화학장치가 설치된 반응조 (Bioelectrochemical anaerobic digestion, BEAD)을 이용하여 수리학적 체류시간에 따른 PTA 폐수의 처리특성을 평가하였다. PTA (purified terephthalic acid) 폐수는 A 산업에서 채취한 것으로서 COD 값이 약 6,000-8,000mg/L였으며, 주요 구성성분은 terephthalic acid, p-toluic acid, benzoic acid, acetic acid 등이었으며, pH는 5-6이었다. 먼저, 실험에 사용한 산화전극 및 환원전극은 흑연직물 섬유의 표면에 탄소나노튜브를 초음파분산법으로 고정하여 제작하였다. 교반기가 설치된 유효부피 15L의 원통형 혐기성 소화조에 산화전극과 환원전극을 각각 설치하였으며, 산화전극과 환원전극 사이에 0.3V의 전압을 인가하였다. 하수슬러지를 이용하여 운전 중인 생물전기화학장치가 설치된 혐기성소화조에서 유출 슬러지를 초기 운전을 위한 식종균으로 사용하였으며, PTA 폐수를 1일 1회 정량 주입하여 수리학적 체류시간을 20일로 유지하였다. 소화조가 안정화되었을 때 수리학적 체류시간을 단계적으로 10일, 5일, 2.5일 그리고 1.25일 까지 변화시키면서 총 바이오가스발생량 및 메탄함량, COD 제거율과 전류의 변화 등을 관측하였다. 생물전기화학장치가 설치된 혐기성소화조의 COD 감량율은 수리학적 체류시간에 관계없이 약 60%로서 보였으며, 바이오가스의 메탄함량(%)은 80% 이상을 유지하였다. 그러나, 메탄발생량은 수리학적 체류시간의 감소에 따른 유기물 부하율 증가에 비례하여 증가하였다. 그러나, 외부회로의 전류와 메탄가스 발생량으로부터 계산한 쿨롱효율은 수리학적 체류시간이 감소에 따라 오히려 증가하였다. COD 제거율, 바이오가스의 메탄함량 및 메탄가스발생량으로 평가한 생물전기화학장치가 설치된 혐기성소화공정의 안정성은 수리학적 체류시간 20일부터 1.25일의 범위에서 영향을 받지 않았다.

      • 질소부하율과 암모니아성 질소 농도 변화에 따른 음식물 탈리액의 혐기성 소화 처리효율 연구

        장부용,박현철,오용걸,신동철,박철휘 한국폐기물자원순환학회(구 한국폐기물학회) 2014 한국폐기물자원순환학회 춘계학술발표논문집 Vol.2014 No.-

        슬러지의 해양투기가 런던협약에 의해 금지됨에 따라 전체 하·폐수처리 공정에서 고농도 유기성 폐기물 처리와 더불어 바이오에너지인 메탄가스를 회수할 수 있는 장점을 가진 혐기성 소화 공정이 주목을 받고 있다. 혐기성 소화 공정은 유기물을 혐기성 조건에서 분해하여 최종 부산물인 메탄(CH<sub>4</sub>)을 발생하는 생물학적 처리방법이다. 효과적인 혐기성 소화 처리를 위해서는 여러 가지 문제점을 극복하여야 한다. 그 중 고농도 질소화합물을 함유한 음식물 탈리액의 C/N 비 불균형으로 인한 암모니아성 질소의 축적은 매우 시급한 문제이다. 본 연구에서는 단상 혐기성 소화조를 적용하여 유기성 폐기물인 음식물 탈리액을 이용한 혐기성 소화 시, 질소 부하율에 따른 암모니아성 질소 변화와 혐기성 소화조의 최적 운전조건을 연구하였다. 또한, 비교 연구를 하기 위해 가수와 슬러지 재순환 공정을 적용하여 암모니아성 질소를 제어하였으며, 고농도 질소 부하율에서 가수와 슬러지 재순환 공정의 적용성 연구와 한계 암모니아성 질소 농도를 도출하였다. 따라서 미생물 활성도를 극대화시켜, 질소를 안정화시킴으로써 최적의 혐기성 소화공정을 구현하였다. 본 연구에 사용된 대상 기질은 인천시 S 매립지의 음식물 탈리액으로써 협잡물을 제거하기 위해 1mm 체로 거른 후, TS 11%로 유지하여 사용하였다. 공정의 구성은 아크릴재질로 된 CSTR 형식의 유효면적 35L 혐기성 반응조와 50L 가스 저장조로 구성하였다. 질소 부하율에 따른 암모니아성 질소의 변화를 분석한 결과, 질소 부하율 0.075, 0.15, 0.3 NLR (kg N/㎥·d) 모든 반응조가 질소 부하율에 비례하여 C/N 비 불균형으로 암모니아성 질소가 증가하였으며, 이에 따라 증가된 암모니아성 질소로 인하여 전반적으로 혐기성 소화 공정에 저해 작용을 일으켰다. 반면 질소 부하율 0.075 NLR (kg N/㎥·d) 반응조에 가수와 슬러지 재순환 공정을 적용하여 암모니아성 질소를 제어한 결과, 적정 암모니아성 질소 농도 약 800mg/L를 유지하였으며, 이에 따라 알칼리도 3,800mg/L, pH 7.2, VFA 100mg/L로 적정 농도를 유지하였다. 고농도 질소 부하율 0.26 NLR (kg N/㎥·d) 반응조에서 혐기성 소화조 내 암모니아성 질소의 한계 농도 도출을 위해 실험한 결과, 혐기성 소화조 내 암모니아성 질소의 축적으로 인하여 약 2,000mg/L의 높은 농도를 보여 혐기성 소화 공정에 독성을 일으켰다. 또한, 고농도 질소 부하율에서 암모니아성 질소의 한계 농도를 유지하기 위하여 가수와 슬러지 재순환 공정을 적용한 결과, 암모니아성 질소는 2,000mg/L 이하로 효과적으로 제어되었으며, 이에 따라 pH 7.4, VFA 1,800mg/L, SCOD<sub>Cr</sub> 6,000mg/L 이하로 혐기성 소화 공정에 저해 작용이 발생하지 않는 범위를 나타내었다.

      • 음폐수의 하수슬러지 병합 처리를 위한 물리화학적 분석 및 혐기성소화 평가

        이원배 ( Wonbae Lee ),이풀잎 ( Puleip Lee ),권준화 ( Junhwa Kwon ),이동진 ( Dongjin Lee ),이원석 ( Wonseok Lee ),신선경 ( Sunkyung Shin ) 한국폐기물자원순환학회(구 한국폐기물학회) 2020 한국폐기물자원순환학회 추계학술발표논문집 Vol.2020 No.-

        최근까지 음식물류폐기물 및 하수슬러지와 같은 유기성폐기물을 해양투기로 처리하였으나 런던협약 이후, 우리나라는 2012년부터 축산분뇨, 2013년부터는 음폐수의 해양배출이 금지되었고, 이에 따라 유기성폐기물을 전량 육상처리 하도록 하고 있다. 대표적인 고농도 유기성폐기물중 하나인 음식물류폐기물은 대부분 사료화 및 퇴비화 등으로 육상처리 되었으나, 아프리카돼지열병(ASF) 발생으로 인해 2019년부터 음식물류폐기물의 습식 사료화가 축소되었다. 이에 습식사료화로 처리되고 있던 음식물류폐기물이 건식사료화·퇴비화·중간가공 등으로 처리 물량이 증가함에 따라 급증하는 음폐수의 처리 방안이 필요한 실정이다. 음폐수의 처리 방법 중, 폐기물 안정화 및 발생하는 바이오가스를 에너지원으로 사용할 수 있는 혐기성 소화가 각광을 받고 있다. 하지만, 국내 음폐수의 경우, 혐기성 소화 시 낮은 pH 및 염분농도로 인해 혐기성 소화 효율이 저하될 수 있어 이를 극복하기 위한 방안으로 하수슬러지와 혼합하여 처리하는 병합 혐기성 소화 방법을 활용할 수 있다. 따라서, 본 연구에서는 음식물류폐기물의 습식사료화가 축소됨에 따른 처리시설별 변동 현황 및 처리량을 파악하였으며, 효율적인 병합 혐기성 소화를 위해 음폐수 및 하수슬러지의 물리화학적 분석을 실시하여 각 폐기물별 바이오가스 발생량 및 저해인자 영향을 평가하였다. 또한, 실증 하수처리장내 혐기소화 시설에 음폐수를 투입하여 혐기성 소화 효율을 평가하였다. ASF 발병 이후, 음식물류폐기물 처리 시설의 현장 및 유선 조사를 실시한 결과, 습식사료화 시설은 총 121 개소 감소하였다. 효율적인 병합 소화를 위한 각 폐기물의 물리화학적 분석을 실시한 결과, 바이오가스 발생량은 음폐수가 하수슬러지에 비해 약 19% 높았으나, 고농도로 존재 시 혐기성 소화에 저해를 줄 수 있는 NH<sub>4</sub><sup>+</sup>농도가 약 1.9배 높았다. 이에, 하수처리장내 음폐수 투입량을 증가시키면서 혐기성 소화를 실시한 결과, TS 및 VS 제거율은 각각 45.4, 61.1%로 음폐수 투입 전과 비교하여 비슷한 수준을 나타냈다. 따라서, 물리화학적 분석 및 실증 시설 운전을 통해 평가한 결과, 음폐수 및 하수슬러지의 병합 혐기성소화 시, 음폐수의 고농도 NH<sub>4</sub><sup>+</sup>와 같은 유해인자들로 인해 혐기성 소화 효율이 감소할 수 있지만, 적정 비율의 음폐수 투입을 통해 기존의 하수슬러지 혐기소화 시설에서 안정적인 병합 혐기성 소화를 실시할 수 있을 것으로 판단된다.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼