RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Magnetic properties of FexCo1-x/CoyFe1-yFe2O4 composite under hydrothermal condition

        Shuiming Li,Qin Wang,Aibing Wu,Hua Yang 한국물리학회 2009 Current Applied Physics Vol.9 No.6

        The metal–ferrite composites FexCo1-x/CoyFe1-yFe2O4 are synthesized by using disproportion of Fe (II) and reduction of Co (II) by Fe0 under hydrothermal condition. The size of the particles of the composites decreases as the [KOH] decreasing. The composites are measured by TEM and it can be deduced that when [KOH] = 0.1, the size of the alloy body-centered cubic (BCC) in composites is 20 ± 7 nm, the size of the Cobalt ferrite (spinel) is 170 ± 50 nm. The maximal value of the saturation magnetization (Ms) of the composite is about 100.14 emu/g, which is synthesized under Co (II)/Fe (II) = 0.05, [KOH] = 1 N, T = 150 ℃ and t = 3 h. The value of Hc of the composite synthesized under Co (II)/Fe (II) = 0.5, t = 3 h, T = 150 ℃ and [KOH] = 10.2 mol/L is about 2878.19 Oe. The Fe–Co alloy is synthesized through a reduction reaction of the composites in a flowing gaseous mixture. There is a maximal value (302.9 emu/g) of the Ms for the alloys generated at 1000 ℃, which is the Co0.412Fe0.588 alloy. The metal–ferrite composites FexCo1-x/CoyFe1-yFe2O4 are synthesized by using disproportion of Fe (II) and reduction of Co (II) by Fe0 under hydrothermal condition. The size of the particles of the composites decreases as the [KOH] decreasing. The composites are measured by TEM and it can be deduced that when [KOH] = 0.1, the size of the alloy body-centered cubic (BCC) in composites is 20 ± 7 nm, the size of the Cobalt ferrite (spinel) is 170 ± 50 nm. The maximal value of the saturation magnetization (Ms) of the composite is about 100.14 emu/g, which is synthesized under Co (II)/Fe (II) = 0.05, [KOH] = 1 N, T = 150 ℃ and t = 3 h. The value of Hc of the composite synthesized under Co (II)/Fe (II) = 0.5, t = 3 h, T = 150 ℃ and [KOH] = 10.2 mol/L is about 2878.19 Oe. The Fe–Co alloy is synthesized through a reduction reaction of the composites in a flowing gaseous mixture. There is a maximal value (302.9 emu/g) of the Ms for the alloys generated at 1000 ℃, which is the Co0.412Fe0.588 alloy.

      • KCI등재

        Failure Mechanism of Single-layer Steel Reticular Domes with Reinforced Concrete Substructure Subjected to Severe Earthquakes

        Chen Lu,Zhiwei Yu,Shuiming Li,Dagang Lu,Jian Liu 한국강구조학회 2016 International Journal of Steel Structures Vol.16 No.4

        This paper performs the research on failure mechanism of single-layer steel reticulated domes with the reinforced concrete substructure subjected to sever earthquakes. Based on ABAQUS, this paper built user-defined material subroutines of the steel and the reinforced concrete, which took material non-linearity and the material damage accumulation into consideration. The failure mechanism of reticulated domes with reinforced concrete substructures under severe earthquakes is studied by the nonlinear dynamic response analysis. Three different failure modes of single-layer reticular domes with different sizes of reinforced concrete substructure are illustrated. Failure criterion is put forward to discriminate the failure modes and to estimate the critical load strength for single-layer reticular domes based on the structural damage theory. It has been found that reinforced concrete substructure has significant impact on the failure behaviors and the critical load of reticulated domes under seismic loads. It is essential to consider the influence of the reinforced concrete substructure upon the failure behaviors in the structural analysis and design process of reticular domes.

      • KCI등재

        Prebiotics enhance the biotransformation and bioavailability of ginsenosides in rats by modulating gut microbiota

        Xiaoyan Zhang,Sha Chen,Feipeng Duan,An Liu,Shaojing Li,Wen Zhong,Wei Sheng,Jun Chen,Jiang Xu,Shuiming Xiao 고려인삼학회 2021 Journal of Ginseng Research Vol.45 No.2

        Background: Gut microbiota mainly function in the biotransformation of primary ginsenosides into bioactive metabolites. Herein, we investigated the effects of three prebiotic fibers by targeting gut microbiota on the metabolism of ginsenoside Rb1 in vivo. Methods: Sprague Dawley rats were administered with ginsenoside Rb1 after a two-week prebiotic intervention of fructooligosaccharide, galactooligosaccharide, and fibersol-2, respectively. Pharmacokinetic analysis of ginsenoside Rb1 and its metabolites was performed, whilst the microbial composition and metabolic function of gut microbiota were examined by 16S rRNA gene amplicon and metagenomic shotgun sequencing. Results: The results showed that peak plasma concentration and area under concentration time curve of ginsenoside Rb1 and its intermediate metabolites, ginsenoside Rd, F2, and compound K (CK), in the prebiotic intervention groups were increased at various degrees compared with those in the control group. Gut microbiota dramatically responded to the prebiotic treatment at both taxonomical and functional levels. The abundance of Prevotella, which possesses potential function to hydrolyze ginsenoside Rb1 into CK, was significantly elevated in the three prebiotic groups (P < 0.05). The gut metagenomic analysis also revealed the functional gene enrichment for terpenoid/polyketide metabolism, glycolysis, gluconeogenesis, propanoate metabolism, etc. Conclusion: These findings imply that prebiotics may selectively promote the proliferation of certain bacterial stains with glycoside hydrolysis capacity, thereby, subsequently improving the biotransformation and bioavailability of primary ginsenosides in vivo.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼