RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Re-entrant relaxor ferroelectricity of methylammonium lead iodide

        Haiyan Guo,Peixue Liu,Shichao Zheng,Shixian Zeng,Na Liu,Seungbum Hong 한국물리학회 2016 Current Applied Physics Vol.16 No.12

        We have performed a piezoresponse force microscopy (PFM) study on methylammonium lead iodide (MAPbI3) thin films in normal (non-resonance, non-band-excitation) contact mode. In contrast to the ferroelectric Pb0.76Ca0.24TiO3 (PCT) control sample, a typical ferroelectric response was not observed. However, a nonlinear electric field dependence of the local PFM amplitude was found in MAPbI3, similar to PCT. An analysis combining results on structure, dielectric dispersion, and weak ferroelectricity demonstrates that MAPbI3 is actually a re-entrant relaxor ferroelectric which, upon cooling, enters into a relaxor phase below its ferroelectric phase transition at ~327 K, due to the balance between the long range ferroelectric order and structural methylammonium group orientational disorder. The ferroelectricity at room temperature is compromised due to the re-entrant relaxor behavior, causing the poor polarization retention or weak ferroelectricity. Our findings essentially conciliate the conflicting experimental results on MAPbI3's ferroelectricity and are beneficial both for basic understanding as well as for device applications.

      • KCI등재

        Analysis of a photonic crystal fiber sensor with reuleaux triangle

        Pibin Bing,Shichao Huang,Xinyue Guo,Hongtao Zhang,Lian Tan,Zhongyang Li,Jianquan Yao 한국광학회 2019 Current Optics and Photonics Vol.3 No.3

        The characteristics of a photonic crystal fiber sensor with reuleaux triangle are studied by using the finite element method. The wavelength sensitivity of the designed optical fiber sensor is related to the arc radius of the reuleaux triangle. Whether the core area is solid or liquid as well as the refractive index of the liquid core contributes to wavelength sensitivity. The simulation results show that larger arc radius leads to higher sensitivity. The sensitivity can be improved by introducing a liquid core, and higher wavelength sensitivity can be achieved with a lower refractive index liquid core. In addition, the specific channel plated with gold film is polished and then analyte is deposited on the film surface, in which case the position of the resonance peak is the same as that of the complete photonic crystal fiber with three analyte channels being filled with analyte. This means that filling process becomes convenient with equivalent performance of designed sensor. The maximum wavelength sensitivity of the sensor is 10200 nm/RIU and the resolution is 9.8 × 10 -6 RIU.

      • KCI등재

        A Novel Photonic Crystal Fiber Sensor with Three D-shaped Holes Based on Surface Plasmon Resonance

        Pibin Bing,Jialei Sui,Shichao Huang,Xinyue Guo,Zhongyang Li,Lian Tan,Jianquan Yao 한국광학회 2019 Current Optics and Photonics Vol.3 No.6

        A novel photonic crystal fiber (PCF) sensor with three D-shaped holes based on surface plasmon resonance (SPR) is analyzed in this paper. Three D-shaped holes are filled with the analyte, and the gold film is deposited on the side of three planes. The design of D-shaped holes with outward expansion can effectively solve the uniformity problem of metallized nano-coating, it is beneficial to the filling of the analyte and is convenient for real-time measurement of the analyte. Compared with the hexagonal lattice structure, the triangular arrangement of the clad air holes can significantly reduce the transmission loss of light and improve the sensitivity of the sensor. The influences of the air hole diameter, the distance between D-shaped holes and core, and the counterclockwise rotation angle of D-shaped holes on sensing performance are studied. The simulation results show that the wavelength sensitivity of the designed sensor can be as high as 10100 nm/RIU and the resolution can reach 9.9 × 10 -6 RIU.

      • KCI등재

        Genomic and Transcriptomic Characterization Revealed the High Sensitivity of Targeted Therapy and Immunotherapy in a Subset of Endometrial Stromal Sarcoma

        Nan Kang,Yinli Zhang,Shichao Guo,Ran Chen,Fangzhou Kong,Shuchun Wang,Mingming Yuan,Rongrong Chen,Danhua Shen,Jianliu Wang 대한암학회 2023 Cancer Research and Treatment Vol.55 No.3

        Purpose The unique chromosomal rearrangements of endometrial stromal sarcoma (ESS) make it possible to distinguish high-grade ESS (HGESS) and low-grade ESS (LGESS) from the molecular perspective. Analysis of ESS at the genomic and transcriptomic levels can help us achieve accurate diagnosis of ESS and provide potential therapy options for ESS patients.Materials and Methods A total of 36 ESS patients who conducted DNA- and/or RNA-based next-generation sequencing were retrospectively enrolled in this study. The molecular characteristics of ESS at genomic and transcriptomic levels, including mutational spectrum, fusion profiles, gene expression and pathway enrichment analysis and features about immune microenvironment were comprehensively explored.Results <i>TP53</i> and <i>DNMT3A</i> mutations were the most frequent mutations. The classical fusions frequently found in <i>HGESS</i> (<i>ZC3H7B-BCOR</i> and <i>NUTM2B-YWHAE</i>) and LGESS (<i>JAZF1-SUZ12</i>) were detected in our cohort. <i>CCND1</i> was significantly up-regulated in HGESS, while the expression of <i>GPER1</i> and <i>PGR</i> encoding estrogen receptor (ER) and progesterone receptor (PR) did not differ significantly between HGESS and LGESS. Actionable mutations enriched in homologous recombination repair, cell cycle, and phosphoinositide 3-kinase/AKT/mammalian target of rapamycin pathways were detected in 60% of HGESS patients. Genes with up-regulated expression in HGESS were significantly enriched in five immune-related pathways. Most HGESS patients (85.7%) had positive predictors of immunotherapy efficacy. Moreover, immune microenvironment analysis showed that HGESS had relatively high immune infiltration. The degree of immune infiltration in HGESS patients with <i>ZC3H7B-BCOR</i> fusion was relatively higher than that of those with <i>NUTM2B-YWHAE</i> fusion.Conclusion This study investigated the molecular characteristics of ESS patients at the genomic and transcriptomic levels and revealed the potentially high sensitivity of targeted therapy and immunotherapy in a subset of HGESS with specific molecular features, providing a basis for guiding decision-making of treatment and the design of future clinical trials on precision therapy.

      • KCI등재

        TsMIP6 enhances the tolerance of transgenic rice to salt stress and interacts with target proteins

        Linlin Sun,Guohong Yu,Xiaori Han,Shichao Xin,Xiaojing Qiang,Linlin Jiang,Shuhui Zhang,Xian-guo Cheng 한국식물학회 2015 Journal of Plant Biology Vol.58 No.5

        Aquaporins (AQPs), a large family of channel proteins in plants, play an important role in regulating the balance of osmotic potential in cells. We isolated an AQP gene, TsMIP6, from the halophyte Thellungiella salsuginea and functionally characterized it in transgenic rice (Oryza sativa). This gene belongs to a subfamily of tonoplast intrinsic proteins and is localized at the plasma membrane. Real-time PCR showed that expression of TsMIP6 in shoots or roots of T. salsuginea was markedly induced by salinity, whereas its ectopic expression in ‘Kitaake’ lines of rice significantly increased plant tolerance to salt stress. Physiological data suggested that TsMIP6 is involved in regulating ion homeostasis and water channel activity in salt-stressed transgenic rice. Heterologous expression analysis indicated that TsMIP6 specifically interacts with a member of the glycoside hydrolase family 64 protein #617 in yeast cells. This suggests that the relationship between TsMIP6 and #617 has a crucial role in mediating osmotic balance in plant cells. Moreover, TsMIP6 might help to modulate the transport of some neutral molecules and may function through a pathway regulating solute equilibrium to maintain osmotic potential.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼