RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Flexible camera series network for deformation measurement of large scale structures

        Qifeng Yu,Banglei Guan,Yang Shang,Xiaolin Liu,Zhang Li 국제구조공학회 2019 Smart Structures and Systems, An International Jou Vol.24 No.5

        Deformation measurement of large scale structures, such as the ground beds of high-rise buildings, tunnels, bridge, and railways, are important for insuring service quality and safety. The pose-relay videometrics method and displacement-relay videometrics method have already presented to measure the pose of non-intervisible objects and vertical subsidence of unstable areas, respectively. Both methods combine the cameras and cooperative markers to form the camera series networks. Based on these two networks, we propose two novel videometrics methods with closed-loop camera series network for deformation measurement of large scale structures. The closed-loop camera series network offers “closed-loop constraints” for the camera series network: the deformation of the reference points observed by different measurement stations is identical. The closed-loop constraints improve the measurement accuracy using camera series network. Furthermore, multiple closed-loops and the flexible combination of camera series network are introduced to facilitate more complex deformation measurement tasks. Simulated results show that the closed-loop constraints can enhance the measurement accuracy of camera series network effectively.

      • KCI등재

        A systematic method from influence line identification to damage detection: Application to RC bridges

        Zhi-Wei Chen,Weibiao Yang,Jun LI,Qifeng Cheng,Qinlin Cai 사단법인 한국계산역학회 2017 Computers and Concrete, An International Journal Vol.20 No.5

        Ordinary reinforced concrete (RC) and prestressed concrete bridges are two popular and typical types of short- and medium-span bridges that accounts for the vast majority of all existing bridges. The cost of maintaining, repairing or replacing degraded existing RC bridges is immense. Detecting the abnormality of RC bridges at an early stage and taking the protective measures in advance are effective ways to improve maintenance practices and reduce the maintenance cost. This study proposes a systematic method from influence line (IL) identification to damage detection with applications to RC bridges. An IL identification method which integrates the cubic B-spline function with Tikhonov regularization is first proposed based on the vehicle information and the corresponding moving vehicle induced bridge response time history. Subsequently, IL change is defined as a damage index for bridge damage detection, and information fusion technique that synthesizes ILs of multiple locations/sensors is used to improve the efficiency and accuracy of damage localization. Finally, the feasibility of the proposed systematic method is verified through experimental tests on a three-span continuous RC beam. The comparison suggests that the identified ILs can well match with the baseline ILs, and it demonstrates that the proposed IL identification method has a high accuracy and a great potential in engineering applications. Results in this case indicate that deflection ILs are superior than strain ILs for damage detection of RC beams, and the performance of damage localization can be significantly improved with the information fusion of multiple ILs.

      • Effects of exploration and molecular mechanism of CsV on eNOS and vascular endothelial functions

        Zuo, Deyu,Jiang, Heng,Yi, Shixiong,Fu, Yang,Xie, Lei,Peng, Qifeng,Liu, Pei,Zhou, Jie,Li, Xunjia Techno-Press 2022 Advances in nano research Vol.12 No.5

        This study aimed to investigate the effects and potential mechanisms of Chikusetsusaponin V (CsV) on endothelial nitric oxide synthase (eNOS) and vascular endothelial cell functions. Different concentrations of CsV were added to animal models, bovine aorta endothelial cells (BAECs) and human umbilical vein endothelial cells (HUVECs) cultured in vitro. qPCR, Western blotting (WB), and B ultrasound were performed to explore the effects of CsV on mouse endothelial cell functions, vascular stiffness and cellular eNOS mRNA, protein expression and NO release. Bioinformatics analysis, network pharmacology, molecular docking and protein mass spectrometry analysis were conducted to jointly predict the upstream transcription factors of eNOS. Furthermore, pulldown and ChIP and dual luciferase assays were employed for subsequent verification. At the presence or absence of CsV stimulation, either overexpression or knockdown of purine rich element binding protein A (PURA) was conducted, and PCR assay was employed to detect PURA and eNOS mRNA expressions, Western blot was used to detect PURA and eNOS protein expressions, cell NO release and serum NO levels. Tube formation experiment was conducted to detect the tube forming capability of HUVECs cells. The animal vasodilation function test detected the vasodilation functions. Ultrasonic detection was performed to determine the mouse aortic arch pulse wave velocity to identify aortic stiffness. CsV stimulus on bovine aortic cells revealed that CsV could upregulate eNOS protein levels in vascular endothelial cells in a concentration and time dependent manner. The expression levels of eNOS mRNA and phosphorylation sites Ser1177, Ser633 and Thr495 increased significantly after CsV stimulation. Meanwhile, CsV could also enhance the tube forming capability of HUVECs cells. Following the mice were gavaged using CsV, the eNOS protein level of mouse aortic endothelial cells was upregulated in a concentration- and time-dependent manner, and serum NO release and vasodilation ability were simultaneously elevated whereas arterial stiffness was alleviated. The pulldown, ChIP and dual luciferase assays demonstrated that PURA could bind to the eNOS promoter and facilitate the transcription of eNOS. Under the conditions of presence or absence of CsV stimulation, overexpression or knockdown of PURA indicated that the effect of CsV on vascular endothelial function and eNOS was weakened following PURA gene silence, whereas overexpression of PURA gene could enhance the effect of CsV upregulating eNOS expression. CsV could promote NO release from endothelial cells by upregulating the expression of PURA/eNOS pathway, improve endothelial cell functions, enhance vasodilation capability, and alleviate vessel stiffness. The present study plays a role in offering a theoretical basis for the development and application of CsV in vascular function improvement, and it also provides a more comprehensive understanding of the pharmacodynamics of CsV.

      • KCI등재

        Internal Mammary Sentinel Lymph Node Biopsy after Neoadjuvant Chemotherapy in Breast Cancer

        Zhao Bi,Peng Chen,Jingjing Liu,Yanbing Liu,Pengfei Qiu,Qifeng Yang,Weizhen Zheng,Yongsheng Wang 한국유방암학회 2018 Journal of breast cancer Vol.21 No.4

        Purpose: The definition of nodal pathologic complete response (pCR) after a neoadjuvant chemotherapy (NAC) just included the evaluation of axillary lymph node (ALN) without internal mammary lymph node. This study aimed to evaluate the feasibility of internal mammary-sentinel lymph node biopsy (IM-SLNB) in patients with breast cancer who underwent NAC. Methods: From November 2011 to 2017, 179 patients with primary breast cancer who underwent operation after NAC were included in this study. All patients received radiotracer injection with modified injection technology. IM-SLNB would be performed on patients with internal mammary sentinel lymph node (IMSLN) visualization. Results: Among the 158 patients with cN+ disease, the rate of nodal pCR was 36.1% (57/158). Among the 179 patients, the visualization rate of IMSLN was 31.8% (57/179) and was 12.3% (7/57) and 87.7% (50/57) among those with cN0 and cN+ disease, respectively. Furthermore, the detection rate of IMSLN was 31.3% (56/179). The success rate of IM-SLNB was 98.2% (56/57). The IMSLN metastasis rate was 7.1% (4/56), and all of them were accompanied by ALN metastasis. The number of positive ALNs in patients with IMSLN metastasis was 3, 6, 8, and 9. The pathology nodal stage had been changed from pN1/ pN2 to pN3b. The pathology stage had been changed from IIA/ IIIA to IIIC. Conclusion: Patients with visualization of IMSLN should perform IM-SLNB after NAC, especially for patients with cN+ disease, in order to complete lymph nodal staging. IM-SLNB could further improve the definition of nodal pCR and guide the internal mammary node irradiation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼