RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        DNA methylation and mRNA expression of COL6A3 in antler mesenchyme of female and male reindeer

        Jian‑Cheng Zhai,Ruo‑Bing Han,Sheng‑Nan Wang,Qiang‑Hui Wang,Yan‑Ling Xia,Wei‑Shi Liu,Ya‑Jie Yin,He‑Ping Li 한국유전학회 2019 Genes & Genomics Vol.41 No.9

        Backgroud Reindeer is the only deer species that both male and female produce antlers, which provides a particularly interesting case in studying the differences between antlers of the two sexes. Alpha 3(VI) Collagen Gene (COL6A3), forms a microfibrillar network associated with the structural integrity and biomechanical properties, has been found to be one of the differentially expressed genes in antler mesenchyme of female and male reindeer. Objective and Methods The promoter sequence of reindeer COL6A3 gene was obtained using the cloning technology and analyzed by the bioinformatics methods. Bisulfite sequencing PCR (BSP) was used to detect the methylation status of the COL6A3 promoter in reindeer antler mesenchyme. Real-time quantitative PCR was used to detect COL6A3 expression in the antler mesenchyme of female and male reindeer. Results Sequence analysis revealed that the reindeer COL6A3 partial promoter sequence was 983 bp including the possible promoter region at + 105 bp to + 155 bp. Homology and phylogenetic analysis indicated that the COL6A3 promoter of reindeer had the closest genetic distance with Bos taurus, Capra hircus and Ovis aries. BSP results indicated that the methylation level of COL6A3 promoter in the female reindeer antler mesenchyme was significantly higher than in the male. Correlating with increased methylation status, we also found that COL6A3 mRNA expression in female reindeer antler mesenchyme was significantly lower than in the male. Conclusion The higher methylation level of the COL6A3 gene in female reindeer antler mesenchyme coincides with decreased COL6A3 mRNA expression, thereby affecting the transposon silencing mechanism and possibly contributing to apparent differences of antlers in female and male reindeer.

      • KCI등재

        Anti-HIV-1 Activity of Lignans from the Fruits of Schisandra rubriflora

        Wei-Lie Xiao,Rui-Rui Wang,Wei Zhao,Ren-Rong Tian,Shan-Zhai Shang,Liu-Meng Yang,Jian-Hong Yang,Jian-Xin Pu,Yong-Tang Zheng,Han-Dong Sun 대한약학회 2010 Archives of Pharmacal Research Vol.33 No.5

        This study investigated the 70% aqueous acetone extract of the fruits of Schisandra rubriflora which led to the isolation of eight lignans, including a new isolate, rubrisandrin C (1), and seven known lignans (2-8) . The structure of 1 was established by extensive 1D and 2D NMR spectroscopy and its absolute stereochemistry was determined by CD spectrum. Compounds 1-5 and 7-8 were evaluated for their anti-HIV-1 activity that showed inhibitory activity on HIV-1IIIB induced syncytium formation with EC50 values in the range of 2.26~20.4 μg/mL. Compounds 1 and 7 exerted their obvious protection of HIV-1IIIB inducted MT-4 host cells lytic effects with a selectivity index of 15.4 and 24.6, respectively.

      • KCI등재

        Investigation of Hetero - Material - Gate in CNTFETs for Ultra Low Power Circuits

        Wei Wang,Min Xu,Jichao Liu,Na Li,Ting Zhang,Sitao Jiang,Lu Zhang,Huan Wang,Jian Gao 대한전자공학회 2015 Journal of semiconductor technology and science Vol.15 No.1

        An extensive investigation of the influence of gate engineering on the CNTFET switching, high frequency and circuit level performance has been carried out. At device level, the effects of gate engineering on the switching and high frequency characteristics for CNTFET have been theoretically investigated by using a quantum kinetic model. It is revealed that hetero - material - gate CNTFET(HMG - CNTFET) structure can significantly reduce leakage current, enhance control ability of the gate on channel, and is more suitable for use in low power and high frequency circuits. At circuit level, using the HSPICE with look - up table(LUT) based Verilog - A models, the performance parameters of circuits have been calculated and the optimum combinations of ФM1/ФM2/ФM3 have been concluded in terms of power consumption, average delay, stability, energy consumption and power - delay product(PDP). We show that, compared to a traditional CNTFET - based circuit, the one based on HMG - CNTFET has a significantly better performance (SNM, energy, PDP). In addition, results also illustrate that HMG - CNTFET circuits have a consistent trend in delay, power, and PDP with respect to the transistor size, indicating that gate engineering of CNTFETs is a promising technology. Our results may be useful for designing and optimizing CNTFET devices and circuits.

      • KCI등재

        Channel and Gate Workfunction-Engineered CNTFETs for Low-Power and High-Speed Logic and Memory Applications

        Wei Wang,Hongsong Xu,Zhicheng Huang,Lu Zhang,Huan Wang,Sitao Jiang,Min Xu,Jian Gao 대한전자공학회 2016 Journal of semiconductor technology and science Vol.16 No.1

        Carbon Nanotube Field-Effect Transistors (CNTFETs) have been studied as candidates for post Si CMOS owing to the better electrostatic control and high mobility. To enhance the immunity against short - channel effects (SCEs), the novel channel and gate engineered architectures have been proposed to improve CNTFETs performance. This work presents a comprehensive study of the influence of channel and gate engineering on the CNTFET switching, high frequency and circuit level performance of carbon nanotube field-effect transistors (CNTFETs). At device level, the effects of channel and gate engineering on the switching and high frequency characteristics for CNTFET have been theoretically investigated by using a quantum kinetic model. This model is based on two-dimensional non-equilibrium Green’s functions (NEGF) solved self - consistently with Poisson’s equations. It is revealed that hetero -material - gate and lightly doped drain and source CNTFET (HMG - LDDS - CNTFET) structure can significantly reduce leakage current, enhance control ability of the gate on channel, improve the switching speed, and is more suitable for use in low power, high frequency circuits. At circuit level, using the HSPICE with look - up table(LUT) based Verilog - A models, the impact of the channel and gate engineering on basic digital circuits (inverter, static random access memory cell) have been investigated systematically. The performance parameters of circuits have been calculated and the optimum metal gate workfunction combinations of ФM1/ФM2 have been concluded in terms of power consumption, average delay, stability, energy consumption and power - delay product (PDP). In addition, we discuss and compare the CNTFET-based circuit designs of various logic gates, including ternary and binary logic. Simulation results indicate that LDDS - HMG - CNTFET circuits with ternary logic gate design have significantly better performance in comparison with other structures.

      • SCIESCOPUSKCI등재

        Channel and Gate Workfunction-Engineered CNTFETs for Low-Power and High-Speed Logic and Memory Applications

        Wang, Wei,Xu, Hongsong,Huang, Zhicheng,Zhang, Lu,Wang, Huan,Jiang, Sitao,Xu, Min,Gao, Jian The Institute of Electronics and Information Engin 2016 Journal of semiconductor technology and science Vol.16 No.1

        Carbon Nanotube Field-Effect Transistors (CNTFETs) have been studied as candidates for post Si CMOS owing to the better electrostatic control and high mobility. To enhance the immunity against short - channel effects (SCEs), the novel channel and gate engineered architectures have been proposed to improve CNTFETs performance. This work presents a comprehensive study of the influence of channel and gate engineering on the CNTFET switching, high frequency and circuit level performance of carbon nanotube field-effect transistors (CNTFETs). At device level, the effects of channel and gate engineering on the switching and high frequency characteristics for CNTFET have been theoretically investigated by using a quantum kinetic model. This model is based on two-dimensional non-equilibrium Green's functions (NEGF) solved self - consistently with Poisson's equations. It is revealed that hetero - material - gate and lightly doped drain and source CNTFET (HMG - LDDS - CNTFET) structure can significantly reduce leakage current, enhance control ability of the gate on channel, improve the switching speed, and is more suitable for use in low power, high frequency circuits. At circuit level, using the HSPICE with look - up table(LUT) based Verilog - A models, the impact of the channel and gate engineering on basic digital circuits (inverter, static random access memory cell) have been investigated systematically. The performance parameters of circuits have been calculated and the optimum metal gate workfunction combinations of ${\Phi}_{M1}/{\Phi}_{M2}$ have been concluded in terms of power consumption, average delay, stability, energy consumption and power - delay product (PDP). In addition, we discuss and compare the CNTFET-based circuit designs of various logic gates, including ternary and binary logic. Simulation results indicate that LDDS - HMG - CNTFET circuits with ternary logic gate design have significantly better performance in comparison with other structures.

      • The genome of the mesopolyploid crop species Brassica rapa

        Wang, Xiaowu,Wang, Hanzhong,Wang, Jun,Sun, Rifei,Wu, Jian,Liu, Shengyi,Bai, Yinqi,Mun, Jeong-Hwan,Bancroft, Ian,Cheng, Feng,Huang, Sanwen,Li, Xixiang,Hua, Wei,Wang, Junyi,Wang, Xiyin,Freeling, Michael Nature Publishing Group, a division of Macmillan P 2011 Nature genetics Vol.43 No.10

        We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and functional evolution. The extent of gene loss (fractionation) among triplicated genome segments varies, with one of the three copies consistently retaining a disproportionately large fraction of the genes expected to have been present in its ancestor. Variation in the number of members of gene families present in the genome may contribute to the remarkable morphological plasticity of Brassica species. The B. rapa genome sequence provides an important resource for studying the evolution of polyploid genomes and underpins the genetic improvement of Brassica oil and vegetable crops.

      • Angelica Sinensis Polysaccharide Induces Erythroid Differentiation of Human Chronic Myelogenous Leukemia K562 Cells

        Wang, Lu,Jiang, Rong,Song, Shu-Dan,Hua, Zi-Sen,Wang, Jian-Wei,Wang, Ya-Ping Asian Pacific Journal of Cancer Prevention 2015 Asian Pacific journal of cancer prevention Vol.16 No.9

        Leukemia is a clonal disorder with blocked normal differentiation and cell death of hematopoietic progenitor cells. Traditional modalities with most used radiation and chemotherapy are nonspecific and toxic which cause adverse effects on normal cells. Differentiation inducing therapy forcing malignant cells to undergo terminal differentiation has been proven to be a promising strategy. However, there is still scarce of potent differentiation inducing agents. We show here that Angelica sinensis polysaccharide (ASP), a major active component in Dong quai (Chinese Angelica sinensis), has potential differentiation inducing activity in human chronic erythro-megakaryoblastic leukemia K562 cells. MTT assays and flow cytometric analysis demonstrated that ASP inhibited K562 cell proliferation and arrested the cell cycle at the G0/G1 phase. ASP also triggered K562 cells to undergo erythroid differentiaton as revealed by morphological changes, intensive benzidine staining and hemoglobin colorimetric reaction, as well as increased expression of glycophorin A (GPA) protein. ASP induced redistribution of STAT5 protein from the cytoplasm to the nucleus. Western blotting analysis further identified that ASP markedly sensitized K562 cells to exogenous erythropoietin (EPO) by activating EPO-induced JAK2/STAT5 tyrosine phosphorylation, thus augmenting the EPO-mediated JAK2/STAT5 signaling pathway. On the basis of these findings, we propose that ASP might be developed as a potential candidate for chronic myelogenous leukemia inducing differentiation treatment.

      • KCI등재

        Effect of P3HT passivation layer on triple cation organic-inorganic hybrid perovskite memristor

        Wang Yucheng,Xiong Yuxuan,Wang Hongsu,Wu Xiang,Sha Jian,Shang Yueyang,Zhang Yongqi,Li Wei,Wang Shaoxi 한국물리학회 2023 Current Applied Physics Vol.47 No.-

        Triple cation organic-inorganic hybrid perovskite (TCP) memristor is a novel candidate for artificial visual applications due to the integrating of recognition, storage, and computing. However, concerns remain regarding the moisture-induced degradation and thermal stability. Here, P3HT was deposited on the TCP film to optimize the memristor performance which showed better film surface quality and lower power consumption. When the thickness of the P3HT layer increases, the grain boundary of the TCP film was gradually filled, leading to the inhibition of the ions/vacancies drifting, and thus the device type was changed from digital to analog. Besides, various functions are demonstrated in TCP photoelectric memristor including excitatory postsynaptic current under optic and electric stimulations and spike rate-dependent plasticity, proving the great application prospects in numerical calculation and information perception.

      • SCIESCOPUSKCI등재

        Investigation of Hetero - Material - Gate in CNTFETs for Ultra Low Power Circuits

        Wang, Wei,Xu, Min,Liu, Jichao,Li, Na,Zhang, Ting,Jiang, Sitao,Zhang, Lu,Wang, Huan,Gao, Jian The Institute of Electronics and Information Engin 2015 Journal of semiconductor technology and science Vol.15 No.1

        An extensive investigation of the influence of gate engineering on the CNTFET switching, high frequency and circuit level performance has been carried out. At device level, the effects of gate engineering on the switching and high frequency characteristics for CNTFET have been theoretically investigated by using a quantum kinetic model. It is revealed that hetero - material - gate CNTFET(HMG - CNTFET) structure can significantly reduce leakage current, enhance control ability of the gate on channel, and is more suitable for use in low power and high frequency circuits. At circuit level, using the HSPICE with look - up table(LUT) based Verilog - A models, the performance parameters of circuits have been calculated and the optimum combinations of ${\Phi}_{M1}/{\Phi}_{M2}/{\Phi}_{M3}$ have been concluded in terms of power consumption, average delay, stability, energy consumption and power - delay product(PDP). We show that, compared to a traditional CNTFET - based circuit, the one based on HMG - CNTFET has a significantly better performance (SNM, energy, PDP). In addition, results also illustrate that HMG - CNTFET circuits have a consistent trend in delay, power, and PDP with respect to the transistor size, indicating that gate engineering of CNTFETs is a promising technology. Our results may be useful for designing and optimizing CNTFET devices and circuits.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼