RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Construction of risk assessment manual for genetically modifi ed rice (Oryza sativa L.)

        이소영,김은경,박재령,장윤희,JANRAHMATULLAH,류태훈,김경민 한국작물학회 2021 Journal of crop science and biotechnology Vol.24 No.2

        Worldwide, grain consumption is increased and grain prices are rising. This has led to a steady increase in the production of highly productive and more aff ordable genetically modifi ed (GM) crops. However, GM crops are highly concerned about potential environmental risks due to the introduction of external genes and genetic modifi cation. Therefore, it is essential to evaluate the environmental risk of genetically modifi ed organisms that can prove the safety of these GM crops. In this research, we analyzed the potential for weediness, unintended gene transfer, and viability in the natural environment for risk assessment of GM rice. To analyze the potential for weediness of GM rice, viviparous germination, shattering, and germination rate were measured. To analyze the potential release of the introduced gene into the environment by unintended gene transfer, the expression of the introduced gene through protein immune response and PCR was analyzed. The seed ger�mination rate of GM rice was measured from low temperature and frozen soil to analyze their survival ability in the natural environment. There was no signifi cant difference between GM rice and parent in all test items. Therefore, the weediness of GM rice did not occur. The items of the GMO risk assessment constructed in this research can be used as important basic material not only for rice but also for GM crops of various varieties.

      • KCI등재

        Effect of Silicate and Phosphate Solubilizing Rhizobacterium Enterobacter ludwigii GAK2 on Oryza sativa L. under Cadmium Stress

        Arjun Adhikari,이고은,Muhammad Aaqil Khan,강상모,Bishnu Adhikari,Muhammad Imran,JANRAHMATULLAH,김경민,이인중 한국미생물·생명공학회 2020 Journal of microbiology and biotechnology Vol.30 No.1

        Silicon and phosphorus are elements that are beneficial for plant growth. Despite the abundant availability of silicate and phosphate in the Earth’s crust, crop nutritional requirements for silicon and phosphorus are normally met through the application of fertilizer. However, fertilizers are one of the major causes of heavy metal pollution. In our study, we aimed to assess silicate and phosphate solubilization by the bacteria Enterobacter ludwigii GAK2, in the presence and absence of phosphate [Ca3(PO4)2] or silicate (Mg2O8Si3), to counteract cadmium stress in rice (Oryza sativa L). Our results showed that the GAK2-treated rice plants, grown in soil amended with phosphate [Ca3(PO4)2] or silicate (Mg2O8Si3), had significantly reduced cadmium content, and enhanced plant growth promoting characteristics including fresh shoot and root weight, plant height, and chlorophyll content. These plants showed significant downregulation of the cadmium transporter gene, OsHMA2, and upregulation of the silicon carrier gene, OsLsi1. Moreover, jasmonic acid levels were significantly reduced in the GAK2-inoculated plants, and this was further supported by the downregulation of the jasmonic acid related gene, OsJAZ1. These results indicate that Enterobacter ludwigii GAK2 can be used as a silicon and phosphorus bio-fertilizer, which solubilizes insoluble silicate and phosphate, and mitigates heavy metal toxicity in crops.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼