RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Facile Synthesis of New Pyrazolopyrimidine Derivatives of Potential Biosignificant Interest

        Aly, Aly A.,El-Karim, Iman A. Gad Korean Chemical Society 2011 대한화학회지 Vol.55 No.5

        An easy and efficient route for the synthesis of some imidazo[1,2-c]pyrazolo[4,3-e]pyrimidines 3-6, imidazo[1,2-c]pyrazolo[4,3-e]triazine 8, pyrazolo[4,3-e]triazolo[1,5-c]pyrimidines 12-15 and pyrazolo-[3',4':4,5]pyrimido[1,6-b]triazines 16, 17 was described through the reaction of readily available 5-aminopyrazole-4-carbonitrile 1 with different reagents. The in vitro antimicrobial activity of some synthesized compounds was examined. Most of the tested compounds proved to be active as antibacterial and antifungal agents.

      • KCI등재
      • KCI등재

        Seismic behavior investigation of the steel multi-story moment frames with steel plate shear walls

        Iman Mansouri,Ali Arabzadeh,Alireza Farzampour,Jong Wan Hu 국제구조공학회 2020 Steel and Composite Structures, An International J Vol.37 No.1

        Steel plate shear walls are recently used as efficient seismic lateral resisting systems. These lateral resistant structures are implemented to provide more strength, stiffness and ductility in limited space areas. In this study, the seismic behavior of the multi-story steel frames with steel plate shear walls are investigated for buildings with 4, 8, 12 and 16 stories using verified computational modeling platforms. Different number of steel moment bays with distinctive lengths are investigated to effectively determine the deflection amplification factor for low-rise and high-rise structures. Results showed that the dissipated energy in moment frames with steel plates are significantly related to the inside panel. It is shown that more than 50% of the dissipated energy under various ground motions is dissipated by the panel itself, and increasing the steel plate length leads to higher energy dissipation capability. The deflection amplification factor is studied in details for various verified parametric cases, and it is concluded that for a typical multi-story moment frame with steel plate shear walls, the amplification factor is 4.93 which is less than the recommended conservative values in the design codes. It is shown that the deflection amplification factor decreases if the height of the building increases, for which the frames with more than six stories would have less recommended deflection amplification factor. In addition, increasing the number of bays or decreasing the steel plate shear wall length leads to a reduction of the deflection amplification factor.

      • KCI등재

        The effect of MWCNTs on the mechanical properties of woven Kevlar/epoxy composites

        Iman Taraghi,Abdolhossein Fereidoon,Ali Mohyeddin 국제구조공학회 2014 Steel and Composite Structures, An International J Vol.17 No.6

        This manuscript presents an experimental investigation on the effect of multi-walled carbon nanotubes (MWCNTs) addition on the tensile, flexural and impact properties of woven Kevlar fabric reinforced epoxy composites. MWCNTs were dispersed in the epoxy resin by sonication technique and the samples were fabricated by hand layup laminating procedure. Scanning electron microscopy (SEM) was used to characterize the microstructure of produced samples. The effects of adding small amounts (≤ 1%) of MWCNT on the tensile, flexural and impact (Izod) behaviors of laminated composites were analyzed. Results revealed that MWCNTs enhanced the Young's modulus up to 20%, bending modulus up to 40%, and impact strength up to 45% in comparison with woven Kevlar fabric/epoxy composites. It was found that the maximum improvements in mechanical properties were happened for 0.5 wt.% MWCNT.

      • KCI등재

        Seismic and progressive collapse assessment of SidePlate moment connection system

        Iman Faridmehr,Mohd Hanim Osman,Mahmood Bin Md. Tahir,Ali Farokhi Nejad,Reza Hodjati 국제구조공학회 2015 Structural Engineering and Mechanics, An Int'l Jou Vol.54 No.1

        The performance of a newly generated steel connection known as SidePlateTM moment connection for seismic loading and progressive collapse phenomenon has been investigated in this paper. The seismic evaluation portion of the study included a thorough study on of interstory drift angles and flexural strengths based on 2010 AISC Seismic Provisions while the acceptance criteria provided in UFC 4-023-03 guideline to resist progressive collapse must be satisfied by the rotational capacity of the connections. The results showed that the SidePlate moment connection was capable of attaining adequate rotational capacity and developing full inelastic capacity of the connecting beam. Moreover, the proposed connection demonstrated an exceptional performance for keeping away the plastic hinges from the connection and exceeding interstory drift angle of 0.06 rad with no fracture developments in beam flange groove-welded joints. The test results indicated that this type of connection had strength, stiffness and ductility to be categorized as a rigid, full-strength and ductile connection.

      • KCI등재

        Deformation and Stability Analysis of Embankment over Stone Column-Strengthened Soft Ground

        Ali Ghorbani,Iman Hosseinpour,Mehdi Shormage 대한토목학회 2021 KSCE JOURNAL OF CIVIL ENGINEERING Vol.25 No.2

        Compacted granular columns are commonly used to support embankments over soft soils. Using a reinforcement layer under the embankment causes the total stress to be further transferred to the column rather than soft soil, thus reducing total deformations of the subsoil. In this paper two dimensional (2D) numerical analysis was used to study the influence of stone columns and basal geosynthetic on deformations and stability of an embankment over soft deposit by means of Plaxis 2D finite element code. Unit cell to plane strain conversion approach was applied to transform columns into equivalent walls thus allowing to simulate a full embankment over a group of columns. Comprehensive parametric analysis was then performed to investigate the role of different critical parameters on embankment behavior. Results showed that the use of stone columns yielded the total deformations of the subsoil to significantly reduce, while its influence was less remarkable as a high stiffness geogrid was placed under the embankment. It was also found that the stone column length was the most influential parameter on the embankment total deformations, so that increasing columns length from 0.25Hs to 0.75Hs reduced the vertical and horizontal deformations by about two and five times, respectively. In addition, the use of a high stiffness basal geogrid caused the stability of the embankment to remarkably improve as the value of safety factor at the end of construction increased from 1.25 to about 1.9.

      • KCI등재

        Outer membrane proteins of Salmonella Typhimurium as an adjuvant in rabies vaccine

        Iman Ibrahim Negm,Yasser M. Ragab,Aly Fahmy Mohamed 대한백신학회 2021 Clinical and Experimental Vaccine Research Vol.10 No.2

        Purpose: The objective of the present study was to evaluate the immune-enhancing potential of Salmonella Typhimurium outer membrane protein (OMP) and alum as adjuvants towards inactivated Vero cells rabies vaccine (FRV/K2). Materials and Methods: Six groups of female Sprague Dawley albino rats (10/group) were used in the evaluation of immunogenicity and safety of vaccines and adjuvants. Total immunoglobulin G secreted interferon-gamma (IFN-γ), and the percentage of proliferated CD4+ and CD8+ T cells were measured. Biochemical analysis and histopathological examination were used to test safety profiles. Results: OMP adjuvanted rabies vaccine (FRV/K2+OMP) (OMP combined locally prepared vaccine) induced significantly higher neutralizing antibodies on day 21 post-vaccination relative to free (FRV/K2) vaccine and alum adsorbed vaccine (FRV/K2+alum) (alum adsorbed locally prepared vaccine). (FRV/K2+OMP) induced a significantly higher level of IFN-γ on day 14 post-vaccination. CD8+ T cells were significantly higher post-vaccination with reference (RV), free (FRV/K2), and (FRV/K2+OMP) than (FRV/K2+alum). On the contrary, CD4+ T cells were significantly elevated post-vaccination with (FRV/K2+alum) at p<0.05. Biochemical analysis and histopathological examination revealed that OMP could be used safely as an adjuvant for the development of more effective rabies vaccines. Conclusion: Outer membrane proteins adjuvanted rabies vaccines would be beneficial to induce rapid neutralizing antibodies and essential cytokines.

      • Research on Nonlinear Automation for First Order Delays System

        Ali Roshanzamir,Farzin Piltan,Arman Jahed,Saman Namvarchi,Nasri B. Sulaiman,Iman Nazari 보안공학연구지원센터 2015 International Journal of Hybrid Information Techno Vol.8 No.9

        First order delay system (FODS) is in class of nonlinear systems. In these systems design control algorithms are very important. In this research nonlinear terms of incremental Proportional Integral Derivative (PID) algorithm is used to nonlinear model-free integrate large amounts of control methodology in a single methodology. This work, proposes a developed method to design nonlinear based PID controller. In this methodology nonlinear model-free sliding mode algorithm help incremental PID to estimate and linearization of first order delay system. According to this research, the controller robustness improved based on nonlinear term of sliding mode algorithm and the chattering is reduced/eliminate based on PID incremental method.

      • KCI등재

        Design and Synthesis of New 1,4-Dihydropyridines Containing 4(5)- chloro-5(4)-imidazolyl Substituent as a Novel Calcium Channel Blocker

        Maryam Iman,Ali Reza Nematollahi,Ahmad Rerza Dehpoor,Abbas Shafiee,Asghar Davood 대한약학회 2011 Archives of Pharmacal Research Vol.34 No.9

        New analogues of nifedipine, in which the ortho-nitro phenyl group at position 4 has been replaced by 4(5)-chloro-5(4)-imidazolyl substituent and which are able to interact with the receptor by hydrogen binding were designed, synthesized, and evaluated as calcium channel antagonists. The designed dihydropyridines were synthesized using the Hantzsch condensation and evaluated as calcium channel antagonists using the high K+ contraction of guineapig ileal longitudinal smooth muscle. A docking study was performed using the AutoDock4 program, and QSAR equations were obtained using multilinear regression. Our computational studies indicated that the oxygen of the ester (O10) and the N3' of the imidazole ring form a hydrogen bonding interaction with the NH of HIS 363 and NH of LYS354, respectively, and that the sum of the BEHp5 and RDF075p are the most significant descriptors. The results of calcium channel antagonist evaluation demonstrated that increasing the chain length in C3 and C5 ester substituents increased activity. The most potent compound was the bis-phenylpropyl ester (5l) derivative, in that it was more active than the reference drug nifedipine and that the bis-phenylethyl ester (5k) derivative had comparable activity with nifedipine. The present research revealed that the 4(5)-chloro-5(4)-imidazolyl moiety is a bioisoster of o-nitrophenyl in nifedipine and provided novel dihydropyridines with more activity as calcium channel antagonists.

      • SCIESCOPUS

        Seismic and progressive collapse assessment of SidePlate moment connection system

        Faridmehr, Iman,Osman, Mohd Hanim,Tahir, Mahmood Bin Md.,Nejad, Ali Farokhi,Hodjati, Reza Techno-Press 2015 Structural Engineering and Mechanics, An Int'l Jou Vol.54 No.1

        The performance of a newly generated steel connection known as SidePlateTM moment connection for seismic loading and progressive collapse phenomenon has been investigated in this paper. The seismic evaluation portion of the study included a thorough study on of interstory drift angles and flexural strengths based on 2010 AISC Seismic Provisions while the acceptance criteria provided in UFC 4-023-03 guideline to resist progressive collapse must be satisfied by the rotational capacity of the connections. The results showed that the SidePlate moment connection was capable of attaining adequate rotational capacity and developing full inelastic capacity of the connecting beam. Moreover, the proposed connection demonstrated an exceptional performance for keeping away the plastic hinges from the connection and exceeding interstory drift angle of 0.06 rad with no fracture developments in beam flange groove-welded joints. The test results indicated that this type of connection had strength, stiffness and ductility to be categorized as a rigid, full-strength and ductile connection.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼