RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Expression analyses of soybean genes encoding methionine-Rsulfoxide reductase under various conditions suggest a possible role in the adaptation to stress

        Ha Duc Chu,Kim-Lien Nguyen,Yasuko Watanabe,Dung Tien Le,Lam-Son Phan Tran 한국응용생명화학회 2016 Applied Biological Chemistry (Appl Biol Chem) Vol.59 No.5

        Under stress, plant cellular proteins can be oxidized at multiple amino acid residues causing protein dysfunction that may lead to reduced viability of plants. One of the oxidized amino acids, methionine sulfoxide (MetO), was frequently found in stressed plants. In soybeans, there are five methionine-R-sulfoxide reductases (GmMSRBs) responsible for the reduction of Met-R-O, one of the two MetO isomers. To identify GmMSRBs that may be involved in repairing Met-R-O under different stress conditions, we determined transcript levels of GmMSRBs in various tissues subjected to dehydration/drought, high salinity, and abscisic acid (ABA) during different developmental stages. Under normal conditions, expression levels were the highest in leaves, followed by roots, and lowest in seeds and seed pods. Among the GmMSRBs, transcripts of GmMSRB1 in the leaves were the highest; at the same time, GmMSRB5 was shown to be expressed at the lowest levels. Expression of GmMSRBs were then determined under stress-inducing conditions. In seedling shoots, GmMSRB2 and GmMSRB5 were expressed in response to drought conditions. In vegetative V6 trifolia, only GmMSRB3 was induced under drought. In reproductive R2 trifolia, the expression of GmMSRB2 and GmMSRB5 were induced by drought. However, expressions of all five GmMSRBs in the roots were not affected by the any stressinducing conditions. Under salt stress, GmMSRB1 was downregulated in seedling shoots and GmMSRB5 was up-regulated in seedling roots. Treatment with ABA did not affect the transcript levels of any GmMSRBs in seedling shoots. However, this treatment up-regulatesGmMSRB2 in seedling roots. Our data suggested that with the exception of GmMSRB4, all the remaining four GmMSRBs play a role in soybean responses to multiple environmental stresses and that genes encoding cytosolic and plastidic GmMSRBs respond differently under stress.

      • SCIEKCI등재

        Expression analyses of soybean genes encoding methionine-R-sulfoxide reductase under various conditions suggest a possible role in the adaptation to stress

        Chu, Ha Duc,Nguyen, Kim-Lien,Watanabe, Yasuko,Le, Dung Tien,Tran, Lam-Son Phan The Korean Society for Applied Biological Chemistr 2016 Applied Biological Chemistry (Appl Biol Chem) Vol.59 No.5

        Under stress, plant cellular proteins can be oxidized at multiple amino acid residues causing protein dysfunction that may lead to reduced viability of plants. One of the oxidized amino acids, methionine sulfoxide (MetO), was frequently found in stressed plants. In soybeans, there are five methionine-R-sulfoxide reductases (GmMSRBs) responsible for the reduction of Met-R-O, one of the two MetO isomers. To identify GmMSRBs that may be involved in repairing Met-R-O under different stress conditions, we determined transcript levels of GmMSRBs in various tissues subjected to dehydration/drought, high salinity, and abscisic acid (ABA) during different developmental stages. Under normal conditions, expression levels were the highest in leaves, followed by roots, and lowest in seeds and seed pods. Among the GmMSRBs, transcripts of GmMSRB1 in the leaves were the highest; at the same time, GmMSRB5 was shown to be expressed at the lowest levels. Expression of GmMSRBs were then determined under stress-inducing conditions. In seedling shoots, GmMSRB2 and GmMSRB5 were expressed in response to drought conditions. In vegetative V6 trifolia, only GmMSRB3 was induced under drought. In reproductive R2 trifolia, the expression of GmMSRB2 and GmMSRB5 were induced by drought. However, expressions of all five GmMSRBs in the roots were not affected by the any stressinducing conditions. Under salt stress, GmMSRB1 was down-regulated in seedling shoots and GmMSRB5 was up-regulated in seedling roots. Treatment with ABA did not affect the transcript levels of any GmMSRBs in seedling shoots. However, this treatment up-regulates GmMSRB2 in seedling roots. Our data suggested that with the exception of GmMSRB4, all the remaining four GmMSRBs play a role in soybean responses to multiple environmental stresses and that genes encoding cytosolic and plastidic GmMSRBs respond differently under stress.

      • KCI등재

        The potential efficacy of the E2-subunit vaccine to protect pigs against different genotypes of classical swine fever virus circulating in Vietnam

        Ha Thi Thanh Tran,Duc Anh Truong,Viet Duc Ly,Hao Thi Vu,Tuan Van Hoang,Chinh Thi Nguyen,Nhu Thi Chu,Vinh The Nguyen,Duyen Thuy Nguyen,Kohtaroh Miyazawa,Takehiro Kokuho,Hoang Vu Dang 대한백신학회 2020 Clinical and Experimental Vaccine Research Vol.9 No.1

        Purpose: To date, many kinds of classical swine fever (CSF) vaccines have been developed to protect against this disease. However, the efficacy of these vaccines to protect the pig against field CSF strains needs to be considered, based on circulating strains of classical swine fever virus (CSFV). Materials and Methods: Recombinant E2-CSFV protein produced by baculovirus/insect cell system was analyzed by western blots and immunoperoxidase monolayer assay. The effect of CSFV-E2 subunit vaccines was evaluated in experimental pigs with three genotypes of CSFV challenge. Anti-E2 specific and neutralizing antibodies in experimental pigs were analyzed by blocking enzyme-linked immunosorbent assay and neutralization peroxidize-linked assay. Results: The data showed that CSFV VN91-E2 subunit vaccine provided clinical protection in pigs against three different genotypes of CSFV without noticeable clinical signs, symptoms, and mortality. In addition, no CSFV was isolated from the spleen of the vaccinated pigs. However, the unvaccinated pigs exhibited high clinical scores and the successful virus isolation from spleen. These results showed that the E2-specific and neutralizing antibodies induced by VN91-E2 antigen appeared at day 24 after first boost and a significant increase was observed at day 28 (p<0.01). This response reached a peak at day 35 and continued until day 63 when compared to controls. Importantly, VN91-E2 induced E2-specific and neutralizing antibodies protected experimental pigs against high virulence of CSFVs circulating in Vietnam, including genotype 1.1, 2.1, and 2.2. Conclusion: These findings also suggested that CSFV VN91-E2 subunit vaccine could be a promising vaccine candidate for the control and prevention of CSFV in Vietnam.

      • KCI등재

        An improvement of real-time polymerase chain reaction system based on probe modification is required for accurate detection of African swine fever virus in clinical samples in Vietnam

        Tran Ha Thi Thanh,Dang Anh Kieu,Ly Duc Viet,Vu Hao Thi,Hoang Tuan Van,Nguyen Chinh Thi,Chu Nhu Thi,Nguyen Vinh The,Nguyen Huyen Thi,Truong Anh Duc,Pham Ngoc Thi,Dang Hoang Vu 아세아·태평양축산학회 2020 Animal Bioscience Vol.33 No.10

        Objective: The rapid and reliable detection of the African swine fever virus (ASFV) plays an important role in emergency control and preventive measures of ASF. Some methods have been recommended by FAO/OIE to detect ASFV in clinical samples, including real-time polymerase chain reaction (PCR). However, mismatches in primer and probe binding regions may cause a false-negative result. Here, a slight modification in probe sequence has been conducted to improve the qualification of real-time PCR based on World Organization for Animal Health (OIE) protocol for accurate detection of ASFV in field samples in Vietnam. Methods: Seven positive confirmed samples (four samples have no mismatch, and three samples contained one mutation in probe binding sites) were used to establish novel real-time PCR with slightly modified probe (Y = C or T) in comparison with original probe recommended by OIE. Results: Both real-time PCRs using the OIE-recommended probe and novel modified probe can detect ASFV in clinical samples without mismatch in probe binding site. A high correlation of cycle quantification (Cq) values was observed in which Cq values obtained from both probes arranged from 22 to 25, suggesting that modified probe sequence does not impede the qualification of real-time PCR to detect ASFV in clinical samples. However, the samples with one mutation in probe binding sites were ASFV negative with OIE recommended probe but positive with our modified probe (Cq value ranked between 33.12-35.78). Conclusion: We demonstrated for the first time that a mismatch in probe binding regions caused a false negative result by OIE recommended real-time PCR, and a slightly modified probe is required to enhance the sensitivity and obtain an ASF accurate diagnosis in field samples in Vietnam.

      • KCI등재

        Genome‑wide identification, organization, and expression profiles of the chicken fibroblast growth factor genes in public databases and Vietnamese indigenous Ri chickens against highly pathogenic avian influenza H5N1 virus infection

        Truong Anh Duc,Tran Ha Thi Thanh,Chu Nhu Thi,Nguyen Huyen Thi,부 티 하오,Hong Yeojin,송기덕,Dang Hoang Vu,홍영호 아세아·태평양축산학회 2023 Animal Bioscience Vol.36 No.4

        Objective: Fibroblast growth factors (FGFs) play critical roles in embryo development, and immune responses to infectious diseases. In this study, to investigate the roles of FGFs, we performed genome-wide identification, expression, and functional analyses of FGF family members in chickens. Methods: Chicken FGFs genes were identified and analyzed by using bioinformatics approach. Expression profiles and Hierarchical cluster analysis of the FGFs genes in different chicken tissues were obtained from the genome-wide RNA-seq. Results: A total of 20 FGF genes were identified in the chicken genome, which were classified into seven distinct groups (A-F) in the phylogenetic tree. Gene structure analysis revealed that members of the same clade had the same or similar exon-intron structure. Chromosome mapping suggested that FGF genes were widely dispersed across the chicken genome and were located on chromosomes 1, 4-6, 9-10, 13, 15, 28, and Z. In addition, the interactions among FGF proteins and between FGFs and mitogen‑activated protein kinase (MAPK) proteins are limited, indicating that the remaining functions of FGF proteins should be further investigated in chickens. Kyoto encyclopedia of genes and genomes pathway analysis showed that FGF gene interacts with MAPK genes and are involved in stimulating signaling pathway and regulating immune responses. Furthermore, this study identified 15 differentially expressed genes (DEG) in 21 different growth stages during early chicken embryo development. RNA-sequencing data identified the DEG of FGFs on 1- and 3-days post infection in two indigenous Ri chicken lines infected with the highly pathogenic avian influenza virus H5N1 (HPAIV). Finally, all the genes examined through quantitative real-time polymerase chain reaction and RNA-Seq analyses showed similar responses to HPAIV infection in indigenous Ri chicken lines (R2 = 0.92– 0.95, p<0.01). Conclusion: This study provides significant insights into the potential functions of FGFs in chickens, including the regulation of MAPK signaling pathways and the immune response of chickens to HPAIV infections.

      • KCI등재

        Dielectrophoresis Microfluidic Enrichment Platform with Built-In Capacitive Sensor for Rare Tumor Cell Detection

        Loc Quang Do,Ha Tran Thi Thuy,Tung Thanh Bui,Van Thanh Dau,Ngoc-Viet Nguyen,Trinh Chu Duc,Chun-Ping Jen 한국바이오칩학회 2018 BioChip Journal Vol.12 No.2

        The manipulation and detection of rare cells are important for many applications in early disease diagnosis and medicine. This study presents a dielectrophoresis (DEP) microfluidic enrichment platform combined with a built-in capacitive sensor for circulating tumor cell detection. The microchip is composed of a lollipop-shaped gold microelectrode structure under a polydimethylsiloxane chamber. A prototype of the device was fabricated using standard micromachining technology. With the proposed device, target cells (in this study, A549 non-small human lung carcinoma and S-180 sarcoma cell lines) are firstly guided toward the center of the working chamber via DEP forces. Then, the target cells are captured by an electrode immobilized by anti-EGFR, which has high affinity toward the target cells. After the cell concentration process, the differential capacitance is read to detect the presence of the target cells. Numerical simulations and measurement experiments were performed to demonstrate the high sensitivity of differential capacitive sensing. The obtained results show high sensitivity for S-180 cell detection (3 mV/cell). The proposed platform is suitable for rapid cancer diagnoses and other metabolic disease applications.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼