RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        miR-375 down-regulation of the rearranged L-myc fusion and hypoxia-induced gene domain protein 1A genes and effects on Sertoli cell proliferation

        Guo, Jia,Liu, Xin,Yang, Yuwei,Liang, Mengdi,Bai, Chunyan,Zhao, Zhihui,Sun, Boxing Asian Australasian Association of Animal Productio 2018 Animal Bioscience Vol.31 No.8

        Objective: This study aimed to screen and identify the target genes of miR-375 in pig Sertoli (ST) cells and to elucidate the effect of miR-375 on the proliferation of ST cells. Methods: In this study, bioinformatics software was used to predict and verify miR-375 target genes. Quantitative polymerase chain reaction (PCR) was used to detect the relationship between miR-375 and its target genes in ST cells. Enzyme-linked immunosorbent assay (ELISA) of rearranged L-myc fusion (RLF) and hypoxia-induced gene domain protein 1A (HIGD1A) was performed on porcine ST cells, which were transfected with a miR-375 mimics and inhibitor to verify the results. Dual luciferase reporter gene assays were performed to assess the interactions among miR-375, RLF, and HIGD1A. The effect of miR-375 on the proliferation of ST cells was analyzed by CellTiter 96 AQueous One Solution Cell Proliferation Assay (MTS). Results: Five possible target genes of miR-375, including RLF, HIGD1A, colorectal cancer associated 2, POU class 3 homeobox 1, and WW domain binding protein 1 like, were found. The results of quantitative PCR suggested that mRNA expression of RLF and HIGD1A had a negative correlation with miR-375, indicating that RLF and HIGD1A are likely the target genes of miR-375. The ELISA results revealed that RLF and HIGD1A were negatively correlated with the miR-375 protein level. The luminescence results for the miR-375 group cotransfected with wild-type RLF and HIGD1A vector were significantly lower than those of the miR-375 group co-transfected with the blank vector or mutant RLF and HIGD1A vectors. The present findings suggest that RLF and HIGD1A are target genes of miR-375 and that miR-375 inhibits ST cell proliferation according to MTS analysis. Conclusion: It was speculated that miR-375 affects cell proliferation through its target genes, which play an important role in the development of testicular tissue.

      • Research on Support Vector Machine in Image Denoising

        Xinfeng Guo,Chunyan Meng 보안공학연구지원센터 2015 International Journal of Signal Processing, Image Vol.8 No.2

        In this paper, a denoising algorithm and simulation experiments of algorithm based on wavelet transform and support vector machine (SVM) image is proposed, a new method is adopted in the selection of characteristic vector of support vector machine, based on training of support vector machine, the support vector machine model is used to distinguish between noise and the original image, to achieve the effect of denoising. The experimental results show that the method can well remove the noise, and can save some important details of images, compared with other denoising method based on wavelet transform, it has a good advantage.

      • KCI등재

        Draft Genome Assembly and Annotation for Cutaneotrichosporon dermatis NICC30027, an Oleaginous Yeast Capable of Simultaneous Glucose and Xylose Assimilation

        Wang Laiyou,Guo Shuxian,Zeng Bo,Wang Shanshan,Chen Yan,Cheng Shuang,Liu Bingbing,Wang Chunyan,Wang Yu,Meng Qingshan 한국균학회 2022 Mycobiology Vol.50 No.1

        The identification of oleaginous yeast species capable of simultaneously utilizing xylose and glucose as substrates to generate value-added biological products is an area of key eco- nomic interest. We have previously demonstrated that the Cutaneotrichosporon dermatis NICC30027 yeast strain is capable of simultaneously assimilating both xylose and glucose, resulting in considerable lipid accumulation. However, as no high-quality genome sequenc- ing data or associated annotations for this strain are available at present, it remains chal- lenging to study the metabolic mechanisms underlying this phenotype. Herein, we report a 39,305,439 bp draft genome assembly for C. dermatis NICC30027 comprised of 37 scaffolds, with 60.15% GC content. Within this genome, we identified 524 tRNAs, 142 sRNAs, 53 miRNAs, 28 snRNAs, and eight rRNA clusters. Moreover, repeat sequences totaling 1,032,129 bp in length were identified (2.63% of the genome), as were 14,238 unigenes that were 1,789.35 bp in length on average (64.82% of the genome). The NCBI non-redundant protein sequences (NR) database was employed to successfully annotate 11,795 of these unigenes, while 3,621 and 11,902 were annotated with the Swiss-Prot and TrEMBL databases, respectively. Unigenes were additionally subjected to pathway enrichment analyses using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster of Orthologous Groups of proteins (COG), Clusters of orthologous groups for eukaryotic com- plete genomes (KOG), and Non-supervised Orthologous Groups (eggNOG) databases. Together, these results provide a foundation for future studies aimed at clarifying the mech- anistic basis for the ability of C. dermatis NICC30027 to simultaneously utilize glucose and xylose to synthesize lipids.

      • KCI등재

        Phase Noise Self-Cancellation Scheme Based on Orthogonal Polarization for OFDM System

        ( Yao Nie ),( Chunyan Feng ),( Fangfang Liu ),( Caili Guo ),( Wen Zhao ) 한국인터넷정보학회 2017 KSII Transactions on Internet and Information Syst Vol.11 No.9

        In orthogonal frequency-division multiplexing (OFDM) systems, phase noise introduced by the local oscillators can cause bit error rate (BER) performance degradation. To solve the phase noise problem, a novel orthogonal-polarization-based phase noise self-cancellation (OP-PNSC) scheme is proposed. First, the efficiency of canceling the phase noise of the OP-PNSC scheme in the AWGN channel is investigated. Then, the OP-PNSC scheme in the polarization-dependent loss (PDL) channel is investigated due to power imbalance caused by PDL, and a PDL pre-compensated OP-PNSC (PPC -OP-PNSC) scheme is proposed to mitigate the power imbalance caused by PDL. In addition, the performance of the PPC-OP-PNSC scheme is investigated, where the signal-to-interference-plus-noise ratio (SINR) and spectral efficiency (SE) performances are analyzed. Finally, a comparison between the OP-PNSC and polarization diversity scheme is discussed. The numerical results show that the BER and SINR performances of the OP-PNSC scheme outperform the case with the phase noise compensation and phase noise self-cancellation scheme.

      • KCI등재

        Engineering a Highly Thermostable and Stress Tolerant Superoxide Dismutase by N-terminal Modification and Metal Incorporation

        Mingchang Li,Shuyi Guo,Xiaomin Li,Quan Wang,Lin Zhu,Chunyan Yin,Wei Wang 한국생물공학회 2017 Biotechnology and Bioprocess Engineering Vol.22 No.6

        Thermophilic or hyperthermophilic SODs (superoxide dismutase) usually offer substantial biotechnological advantages over mesophilic SODs. Previously a 244-amino acid N-terminal domain (NTD) from a heatresistant SOD of Geobacillus thermodenitrificans NG80-2 was discovered and demonstrated to be able to confer thermostability to homologous mesophilic SODs, which revealed a new type of heat resistance mechanism. To further improve the heat resistance and stress tolerance of thermophilic cambialistic superoxide dismutase (Fe/Mn- SODAp) from Aeropyrum pernix K1 through metal incorporation and fusion with the newly found peptide NTD for broadening its industrial application, the wildtype SODAp and NTD-fused ntdSODAp were expressed in E. coli BL21 and incorporated with metal cofactors by two ways. Recombinant fusion SOD obtained by in vitro reconstitution (Mn-rec ntdSODAp) exhibited improved optimum temperature at 70oC and dramatically enhanced thermostability especially at 110oC with enhanced pH stability from 4 to 10 and higher tolerance for denaturants and organic media than Mn-rec SODAp. To the best of our knowledge, Mn-rec ntdSODAp could be the most heat resistant SOD. In addition, metal incorporation of SODAp and ntdSODAp via in vivo modification have been developed and proved to be more practical for industrial use. These results indicate that fusion with NTD along with metal incorporation can generate superimposed effect and be applied to enhance the stability of cambialistic thermophilic SODs, thus providing a universal and convenient bioengineering method for generating extremely stable SODs.

      • KCI등재

        Investigation and Implementation of a Passive Snubber with a Coupled-Inductor in a Single-Stage Full-Bridge Boost PFC Converter

        Tao Meng,Hongqi Ben,Chunyan Li,Guo Wei 전력전자학회 2013 JOURNAL OF POWER ELECTRONICS Vol.13 No.2

        In this paper, an improved passive snubber is investigated in a single-phase single-stage full-bridge boost power factor correction(PFC) converter, by which the voltage spike across primary side of the power transformer can be suppressed and the absorbed energy can be transferred to the output side. When compared with the basic passive snubber, the two single-inductors are replaced by a coupled-inductor in the improved snubber. As a result, synchronous resonances in the snubber can be achieved, which can avoid the unbalance of the voltage and current in the snubber. The operational principle of the improved passive snubber is analyzed in detail based on a single-phase PFC converter, and the design considerations of both the snubber and the coupled-inductor are given. Finally, a laboratory-made prototype is built, and the experimental results verify the feasibility of the proposed method and the validity of the theoretical analysis and design method.

      • KCI등재

        RNA binding protein QKI contributes to WT1 mRNA and suppresses apoptosis in ST cells

        Xin Liu,Jia Guo,Mengjiao Zhou,Yuwei Yang,Mengdi Liang,Chunyan Bai,Zhihui Zhao,Boxing Sun 한국유전학회 2017 Genes & Genomics Vol.39 No.9

        The RNA binding protein quaking (QKI), a key member of the STAR family, as an upstream gene could involve in much process including cell proliferation, apoptosis, differentiation and so on. However, the roles of QKI in germ cell, especially in swine testis (ST) cells, was not clear currently. And apoptosis plays important roles in the growth and development. The purpose of the present study was to clarify the relationship between QKI and apoptosis in ST cells. Firstly, our results showed that pEF1α- QKI and shQKI3 have clear effects on expression levels of QKI. Secondly, we established that QKI directly binds to WT1 3′UTR by binding with QRE-1 (2046–2052 bp, ACT AAC ) only. Furthermore, QKI overexpression significantly increased the expression levels of WT1 and Bcl-2. QKI also has the effect on delaying the degradation of WT1 mRNA. In addition, we verified that QKI had a significantly suppressed apoptosis in ST cells. Finally, pBI-WT1 could make up for shQKI3-induced decrease in WT1, Bcl-2 mRNA levels and suppress apoptosis in ST cells. The results demonstrated that QKI was an important regulatory factor that affects apoptosis by targeting WT1 gene.

      • SCIESCOPUSKCI등재

        Investigation and Implementation of a Passive Snubber with a Coupled-Inductor in a Single-Stage Full-Bridge Boost PFC Converter

        Meng, Tao,Ben, Hongqi,Li, Chunyan,Wei, Guo The Korean Institute of Power Electronics 2013 JOURNAL OF POWER ELECTRONICS Vol.13 No.2

        In this paper, an improved passive snubber is investigated in a single-phase single-stage full-bridge boost power factor correction (PFC) converter, by which the voltage spike across primary side of the power transformer can be suppressed and the absorbed energy can be transferred to the output side. When compared with the basic passive snubber, the two single-inductors are replaced by a coupled-inductor in the improved snubber. As a result, synchronous resonances in the snubber can be achieved, which can avoid the unbalance of the voltage and current in the snubber. The operational principle of the improved passive snubber is analyzed in detail based on a single-phase PFC converter, and the design considerations of both the snubber and the coupled-inductor are given. Finally, a laboratory-made prototype is built, and the experimental results verify the feasibility of the proposed method and the validity of the theoretical analysis and design method.

      • KCI등재

        Exosomes Derived from Human Amniotic Mesenchymal Stem Cells Facilitate Diabetic Wound Healing by Angiogenesis and Enrich Multiple lncRNAs

        Fu Shangfeng,Zhang Hongyan,Li Xiancai,Zhang Qiling,Guo Chunyan,Qiu Keqing,Feng Junyun,Liu Xiaoxiao,Liu Dewu 한국조직공학과 재생의학회 2023 조직공학과 재생의학 Vol.20 No.2

        BACKGROUND: Diabetic wound healing remains a major challenge due to the impaired functionality of angiogenesis by persistent hyperglycemia. Mesenchymal stem cell exosomes are appropriate candidates for regulating the formation of angiogenesis in tissue repair and regeneration. Here, we explored the effects of exosomes derived from human amniotic mesenchymal stem cell (hAMSC-Exos) on the biological activities of human umbilical vein endothelial cells (HUVECs) treated with high glucose and on diabetic wound healing and investigate lncRNAs related to angiogenesis in hAMSC-Exos. METHODS: hAMSCs and hAMSC-Exos were isolated and identified by flow cytometry or western blot. A series of functional assays such as cell counting kit-8, scratching, transwell and tube formation assays were performed to evaluate the potential effect of hAMSC-Exos on high glucose-treated HUVECs. The effect of hAMSC-Exos on diabetic wound healing were tested by measuring wound closure rates and immunohistochemical staining of CD31. Subsequently, the lncRNAs profiles in hAMSC-Exos and hAMSCs were examined to screen the lncRNAs related to angiogenesis. RESULTS: The isolated hAMSC-Exos had a size range of 30–150 nm and were positive for CD9, CD63 and CD81. The hAMSC-Exos facilitate the functional properties of high glucose-treated HUVECs including the proliferation, migration and the angiogenic activities as well as wound closure and angiogenesis in diabetic wound. hAMSC-Exos were enriched lncRNAs that related to angiogenesis, including PANTR1, H19, OIP5-AS1 and NR2F1-AS1. CONCLUSION: Our findings demonstrated hAMSC-Exos facilitate diabetic wound healing by angiogenesis and contain several exosomal lncRNAs related to angiogenesis, which may represent a promising strategy for diabetic wound healing.

      • KCI등재

        Long Noncoding RNA Expression Profiling During the Neuronal Differentiation of Glial Precursor Cells from Rat Dorsal Root Ganglia

        Yunfei Dai,Wei Ma,Tong Zhang,Jinwei Yang,Chenghao Zang,Kuangpin Liu,Xianbin Wang,Jiawei Wang,Zhen Wu,Xingkui Zhang,Chunyan Li,Junjun Li,Xiangpeng Wang,Jianhui Guo,Liyan Li 한국생물공학회 2020 Biotechnology and Bioprocess Engineering Vol.25 No.3

        Long noncoding RNAs (lncRNAs) play important roles in the process of cell fate determination. However, their function and expression profiles have not yet been systematically investigated during the transdifferentiation of glial precursor cells derived from dorsal root ganglia (DRG) in the peripheral nervous system. Our results demonstrated significant differences in gene architecture and expression among the three transcript types (lncRNA, mRNA, and TUCP). Distinct differences in transcript length, exon number, and ORF length were identified between lncRNAs and mRNAs after comparative analysis of their structure and sequence conservation. We found that the upregulated lncRNAs outnumbered the downregulated lncRNAs in glial precursor cells cultured with proBDNF antiserum compared with the levels in glial precursor cells cultured without proBDNF antiserum. By a series of GO and KEGG analyses, we found that the effects of some lncRNAs on their target genes in cis were related to nerve growth factor-induced cell cycle, cell phenotype change, and neuronal differentiation. The qRT-PCR verification results of lncRNAs ENSRNOT00000091991, ENSRNOT00000087717, and LNC_000429 were mostly consistent with the sequencing results. The candidate lncRNAs may be associated with the neuronal transdifferentiation of glial precursor cells. Our study provides the first evidence for a remarkably diverse pattern of lncRNA expression during neuronal differentiation of glial precursor cells from rat DRG, and also provides a resource for lncRNA studies in the field of cell differentiation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼