RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load

        Do Quang Chan,Pham Dinh Nguyen,Vu Dinh Quang,Vu Thi Thuy Anh,Nguyen Dinh Duc 국제구조공학회 2019 Steel and Composite Structures, An International J Vol.31 No.3

        This study deals with the nonlinear static analysis of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) truncated conical shells subjected to axial load based on the classical shell theory. Detailed studies for both nonlinear buckling and post-buckling behavior of truncated conical shells. The truncated conical shells are reinforced by single-walled carbon nanotubes which alter according to linear functions of the shell thickness. The nonlinear equations are solved by both the Airy stress function and Galerkin method based on the classical shell theory. In numerical results, the influences of various types of distribution and volume fractions of carbon nanotubes, geometrical parameters, elastic foundations on the nonlinear buckling and post-buckling behavior of FG-CNTRC truncated conical shells are presented. The proposed results are validated by comparing with other authors.

      • SCISCIESCOPUS

        Clausena anisata-mediated protection against lipopolysaccharide-induced acute lung injury in mice

        JEON, CHAN-MI,SHIN, IN-SIK,SHIN, NA-RAE,HONG, JU-MI,KWON, OK-KYOUNG,KIM, JUNG-HEE,OH, SEI-RYANG,BACH, TRAN-THE,HAI, DO-VAN,QUANG, BUI-HONG,CHOI, SANG-HO,LEE, JOONGKU,MYUNG, PYUNG-KEUN,AHN, KYUNG-SEOP Spandidos Publications 2016 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE Vol.37 No.4

        <P>Clausena anisata (Willd.) Hook.f. ex Benth. (CA), which is widely used in traditional medicine, reportedly exerts antitumor, anti-inflammatory and other important therapeutic effects. The aim of the present study was to investigate the potential therapeutic effects of CA in a mouse model of lipopolysaccharide (LPS)-induced acute lung injury (ALI) and in LPS-stimulated RAW 264.7 cells. Male C57BL/6 mice were administered treatments for 3 days by oral gavage. On day 3, the mice were instilled intranasally with LPS or PBS followed 3 h later by oral CA (30 mg/kg) or vehicle administration. In vitro, CA decreased nitric oxide (NO) production and pro-inflammatory cytokines, such as interleukin (IL)-6 and prostaglandin E2 (PGE(2)), in LPS-stimulated RAW 264.7 cells. CA also reduced the expression of pro-inflammatory mediators, such as cyclooxygenase-2. In vivo, CA administration significantly reduced inflammatory cell numbers in the bronchoalveolar lavage fluid (BALF) and suppressed pro-inflammatory cytokine levels, including tumor necrosis factor-alpha (TNF-alpha), IL-6, and IL-1 beta, as well as reactive oxygen species production in the BALF. CA also effectively reduced airway inflammation in mouse lung tissue of an LPS-induced ALI mouse model, in addition to decreasing inhibitor kappa B (I kappa B) and nuclear factor-kappa B (NF-kappa B) p65 phosphorylation. Taken together, the findings demonstrated that CA inhibited inflammatory responses in a mouse model of LPS-induced ALI and in LPS-stimulated RAW 264.7 cells. Thus, CA is a potential candidate for development as an adjunctive treatment for inflammatory disorders, such as ALI.</P>

      • KCI등재

        The Role of Zn Doping on the Catalytic Activity of the Nanoparticle Perovskite La0.7Sr0.3MnO3

        Tran Thi Minh Nguyet,Nguyen Quang Huan,Tran Que Chi,Do The Chan,Nguyen Doan Thai,Nguyen Cong Trang,Luu Tien Hung,Le Van Tiep,Nguyen Van Qui 한국물리학회 2008 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.52 No.5

        The nanometer complex oxide La0:7Sr0.3Mn0.6Zn0.₄O₃ was prepared by using a Sol-Gel method with citric acid as a ligand. The in uence of Zn doping of La0.7Sr0.₃MnO₃ on the structure, the morphology, the surface properties and on the catalytic activity of material was studied by using X-ray diraction (XRD), transmission electron microscopy (TEM), a high-resolution images and selected area electron diraction (SAED), physical adsorption and temperature programmed surface reaction (TPSR) methods. The results showed that perovskite La0:7Sr0:3Mn0:6. Zn0.₄O₃ could well catalyse propene oxidation in the temperature range 190 { 280 ℃, which was reduced to 100 { 120 ℃ for catalyst La1-χSrχMnO₃ The nanometer complex oxide La0:7Sr0.3Mn0.6Zn0.₄O₃ was prepared by using a Sol-Gel method with citric acid as a ligand. The in uence of Zn doping of La0.7Sr0.₃MnO₃ on the structure, the morphology, the surface properties and on the catalytic activity of material was studied by using X-ray diraction (XRD), transmission electron microscopy (TEM), a high-resolution images and selected area electron diraction (SAED), physical adsorption and temperature programmed surface reaction (TPSR) methods. The results showed that perovskite La0:7Sr0:3Mn0:6. Zn0.₄O₃ could well catalyse propene oxidation in the temperature range 190 { 280 ℃, which was reduced to 100 { 120 ℃ for catalyst La1-χSrχMnO₃

      • KCI등재후보

        Nonlinear vibration and stability of FG nanotubes conveying fluid via nonlocal strain gradient theory

        Van-Hieu Dang,Hamid M. Sedighi,Do Quang Chan,Ömer Civalek,Ahmed E. Abouelregal 국제구조공학회 2021 Structural Engineering and Mechanics, An Int'l Jou Vol.78 No.1

        In this work, a model of a functionally graded (FG) nanotube conveying fluid embedded in an elastic medium is developed based on the nonlocal strain gradient theory (NSGT) in conjunction with Euler-Bernoulli beam theory (EBT). The main objective of this research is to investigate the nonlinear vibration and stability analysis of fluid-conveying nanotubes. The governing equations of motion are derived by means of Hamiltonian principle. The analytical expressions of nonlinear frequencies and critical flow velocities for two different types of boundary conditions including pinned-pinned (P-P) and clamped-clamped (C-C) conditions are obtained by employing Galerkin method as well as Hamiltonian Approach (HA). Comparison of the obtained results with the published works show the acceptable accuracy of the current solutions. The effects of the power-law index, the nonlocal and material length scale parameters and the elastic medium on the stability and nonlinear responses of FG nanotubes are thoroughly investigated and discussed.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼