RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Dynamic behavior of SRC columns with built-in cross-shaped steels subjected to lateral impact

        Yanhua Liu,Lei Zeng,Changjun Liu,Jinxu Mo,Buqing Chen 국제구조공학회 2020 Structural Engineering and Mechanics, An Int'l Jou Vol.76 No.4

        This paper presents an investigation on the dynamic behavior of SRC columns with built-in cross-shaped steels under impact load. Seven 1/2 scaled SRC specimens were subjected to low-speed impact by a gravity drop hammer test system. Three main parameters, including the lateral impact height, the axial compression ratios and the stirrup spacing, were considered in the response analysis of the specimens. The failure mode, deformation, the absorbed energy of columns, as well as impact loads are discussed. The results are mainly characterized by bending-shear failure, meanwhile specimens can maintain an acceptable integrity. More than 33% of the input impact energy is dissipated, which demonstrates its excellent impact resistance. As the impact height increases, the flexural cracks and shear cracks observed on the surface of specimens were denser and wider. The recorded time-history of impact force and mid-span displacement confirmed the three stages of relative movement between the hammer and the column. Additionally, the displacements had a notable delay compared to the rapid changes observed in the measured impact load. The deflection of the mid-span did not exceed 5.90mm while the impact load reached peak value. The impact resistance of the specimen can be improved by proper design for stirrup ratios and increasing the axial load. However, the cracking and spalling of the concrete cover at the impact point was obvious with the increasing in stiffness.

      • KCI등재

        F-box Protein Arabidillo-1 Promotes Lateral Root Development by Depressing the Functioning of GA3 in Arabidopsis

        Changjun Mu,Ni Chen,Xiaofeng Li,Pengfei Jia,Zhaoyan Wang,Heng Liu 한국식물학회 2010 Journal of Plant Biology Vol.54 No.5

        In Arabidopsis, Arabidillo-1 and Arabidillo-2have great sequence homology to Dictyostelium and metazoan β–catenin/Armadillo, which are important to animal and Dictyostelium development. Arabidillo-1 and Arabidillo-2 promote lateral root formation redundantly in Arabidopsis. Here, we showed that gibberellins (GA3) has a greater inhibitory effect on lateral root growth from the null mutant arabidillo-1 than from the wild type, suggesting that the mechanism for Arabidillo-1-regulated modulation of lateral root proliferation is associated with GA3-metabolic or signaling pathways. Our yeast two-hybrid analysis demonstrated that Arabidillo-1 interacts with ASK2 and ASK11, and that ASK2 can bind with the F-box domain of Arabidillo-1. Therefore, Arabidillo-1 is involved in the ubiquitin/26S proteasome-mediated proteolytic pathway. Based on these results, we conclude that Arabidillo-1 can degrade some positive regulator of the GA3 signaling pathway through selective protein degradation of ubiquitin/26S. Moreover, that process is believed to be the mechanism for Arabidillo-1 promotion of lateral root development in Arabidopsis.

      • KCI등재

        MicroRNA-708-3p as a potential therapeutic target via the ADAM17-GATA/STAT3 axis in idiopathic pulmonary fibrosis

        Bo Liu,Rongrong Li,Jinjin Zhang,Chao Meng,Jie Zhang,Xiaodong Song,Changjun Lv 생화학분자생물학회 2018 Experimental and molecular medicine Vol.50 No.-

        MicroRNAs (miRNAs) are important diagnostic markers and therapeutic targets for many diseases. However, the miRNAs that control the pathogenesis of idiopathic pulmonary fibrosis (IPF) and act as potential therapeutic targets for the disease are rarely studied. In the present study, we analyzed the function and regulatory mechanism of microRNA-708-3p (miR-708-3p) and evaluated this marker’s potential as a therapeutic target in IPF. The clinical and biological relevance of fibrogenesis for miR-708-3p was assessed in vivo and in vitro, specifically in matching plasma and tissue samples from 78 patients with IPF. The data showed that the miR-708-3p levels decreased during fibrosis and inversely correlated with IPF. The experiments showed that the decreased miR-708 promoter activity and primer-miR-708(pri-miR-708) expression were the potential causes. By computational analysis, a dual luciferase reporter system, rescue experiments and a Cignal Finder 45-Pathway system with siADAM17 and a miR-708-3p mimic, we identified that miR-708-3p directly regulates its target gene, a disintegrin and metalloproteinase 17 (ADAM17), through a binding site in the 3′ untranslated region, which depends on the GATA/STAT3 signaling pathway. Finally, an miR-708-3p agomir was designed and used to test the therapeutic effects of the miR-708-3p in an animal model. Small-animal imaging technology and other experiments showed that the dynamic image distribution of the miR-708-3p agomir was mainly concentrated in the lungs and could block fibrogenesis. In conclusion, the miR-708-3p– ADAM17 axis aggravates IPF, and miR-708-3p can serve as a potential therapeutic target for IPF.

      • KCI등재

        A Simple and Rapid Phosphorescence Probe Based on Mn-Doped ZnS Quantum Dots for Chloramphenicol Detection

        Zhenping Liu,Xianfeng Wang,Jingzhou Hou,Danqun Huo,Changjun Hou 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2019 NANO Vol.14 No.11

        An innovative phosphorescence probe based on Mn-doped ZnS quantum dots (Mn:ZnS QDs) was developed for selective detection of chloramphenicol (CAP) via inner-filter effect (IFE). Mn:ZnS QDs were synthesized by water method and modified with L-Cysteine for better stability, and the average diameter of the nanometer particle was 3.8 nm. With the excitation wavelength at 289 nm, the strong phosphorescence of Mn:ZnS QDs can be emitted at 583 nm. The excitation spectrum of Mn:ZnS QDs was substantially overlapped with the absorption spectrum of the target CAP. The excited light of Mn:ZnS QDs can be absorbed partially by CAP when they coexist, the phosphorescence intensity decreased with the increasing concentration of CAP, and it has a good linear relationship. Under optimal conditions, the linear relational concentration range achieved four orders of magnitude from 25 to 1.2 x 10 5 ng · mL -1 (R2 = 0.999), with a detection limit (LOD; S/N = 3) down to 0.81 ng · mL -1. The simple, rapid and low cost IFE phosphorescent probe exhibited satisfactory recoveries ranging from 88.9% to 98.5% for CAP analysis in spiked honey, which shows a potential for routine screening of CAP in ensuring the food safety.

      • Conceptual design and optimization of polymer gear system for low-thrust turbofan aeroengine accessory transmission

        Lu Zehua,Liu Chang,Liao Changjun,Zhu Jiazan,Liu Huaiju,CHENYIMING 한국CDE학회 2024 Journal of computational design and engineering Vol.11 No.1

        The advancement in materials and lubrication has significantly improved the load-carrying capability of polymer gears, making them ideal for replacing metallic gears in power transmission. However, this conversion is not as simple as substituting steel with polymer; it requires a thorough redesign of the structural parameters specific to polymer gears. To enable the metallic-to-polymer conversion of gear in power transmission, a model for optimizing polymer gear systems was developed. An investigation of the accessory transmission system of a low-thrust turbofan aeroengine was conducted. A comprehensive performance index for the accessory transmission was developed using combined weighting coefficients to achieve the optimization goals including total mass, transmission efficiency, maximum transmission error, and so on. The polymer gear system developed using the proposed optimization model demonstrated a 70.4% reduction in total mass compared with the metallic gear system, as well as a transmission error decrease of over 29% when compared with polymer gear systems with standard tooth profiles. The contribution analysis results demonstrated that optimizing the tooth width, pressure angle, and addendum height of polymer gears can significantly enhance the load-carrying capacity of the polymer gear system while maximizing tooth profile flexibility.

      • KCI등재

        The experimental investigation of bisphenol A degradation by Fenton process with different types of cyclodextrins

        Wenjing Chen,Changjun Zou,Yuan Liu,Xiaoke Li 한국공업화학회 2017 Journal of Industrial and Engineering Chemistry Vol.56 No.-

        In this work, the degradation efficiencies of bisphenol A (BPA) by Fenton reaction were comparedsystematically with varying cyclodextrins. The results showed that the removal rate of BPA displays aconsiderable increase by Fenton reaction in presence of b-cyclodextrin (b-CD) and its derivatives. Specifically, 98 2% and 89 2% of BPA was removed with carboxymethyl-b-cyclodextrin (CMCD) andb-CD, respectively. Additionally, to understand the reaction mechanism, the structure activity ofcyclodextrins with substrate and the kinetic of Fenton reaction with cyclodextrins have beeninvestigated. Results showed that the structure activity was the major role for cyclodextrins in thissystem.

      • KCI등재

        Mild purification of multiwalled carbon nanotubes with increased selectivity for carbon impurity and residual metal removal

        Chen Erdong,Liu Qiang,Wu Pan,He Jian,Liu Changjun,Jiang Wei 한국탄소학회 2024 Carbon Letters Vol.34 No.1

        In this study, the refinement of Multiwalled Carbon Nanotubes (MWCNTs) derived from chemical vapor decomposition is investigated. An ultrasonic pretreatment method is employed to disentangle carbon and metal impurities intertwined with MWCNTs. The pretreated MWCNTs exhibit a marginal decrease in C–O/C = O content from 8.9 to 8.8%, accompanied by a 2.5% increase in sp3 carbon content, indicating a mildly destructive pretreatment approach. Subsequently, selective oxidation by CO2 and hydrochloric acid etching are utilized to selectively remove carbon impurities and residual metal, respectively. The resulting yield of intact MWCNTs is approximately 85.65 wt.%, signifying a 19.91% enhancement in the one-way yield of pristine MWCNTs. Notably, the residual metal content experiences a substantial reduction from 9.95 ± 2.42 wt.% to 1.34 ± 0.06 wt.%, representing a 15.68% increase in the removal rate. These compelling findings highlight the potential of employing a mild purification process for MWCNTs production, demonstrating promising application prospects.

      • An investigation on the bearing capacity of steel girder-concrete abutment joints

        Chen Liang,Yuqing Liu,Changjun Zhao,Bo Lei,Jieliang Wu 국제구조공학회 2021 Steel and Composite Structures, An International J Vol.38 No.3

        To achieve a rational detail of the girder-abutment joints in composite integral bridges, and validate the performance of the joints with perfobond connectors, this paper proposes two innovative types of I-shaped steel girder-concrete abutment joints with perfobond connectors intended for the most of bearing capacity and the convenience of concrete pouring. The major difference between the two joints is the presence of the top flange inside the abutments. Two scaled models were investigated with tests and finite element method, and the damage mechanism was revealed. Results show that the joints meet design requirements no matter the top flange exists or not. Compared to the joint without top flange, the initial stiffness of the one with top flange is higher by 7%, and the strength is higher by 50%. The moment decreases linearly in both types of the joints. At design loads, perfobond connectors take about 70% and 50% of the external moment with and without top flange respectively, while at ultimate loads, perfobond connectors take 53% and 26% of the external moment respectively. The ultimate strengths of the reduced sections are suggested to be taken as the bending strengths of the joints.

      • KCI등재

        C-phycocyanin reinforces autophagy to block pulmonary fibrogenesis by inhibiting lncIAPF biogenesis

        Hu Wenjie,Wang Yujie,Yang Huiling,Zhang Leiming,Liu Bo,Ji Yunxia,Song Xiaodong,Lv Changjun,Zhang Songzi 대한약학회 2024 Archives of Pharmacal Research Vol.47 No.7

        Pulmonary fibrosis is a chronic and irreversible progressive lung disease caused by various factors, such as age and environmental pollution. With countries stepping into an aging society and the seriousness of environmental pollution caused by global industrialization, the incidence of pulmonary fibrosis is annually increasing. However, no effective drug is available for pulmonary fibrosis treatment. C-phycocyanin (C-PC), extracted from blue-green algae, has good water solubility and antioxidation. This study elucidated that C-PC reinforces autophagy to block pulmonary fibrogenesis by inhibiting long noncoding RNA (lncRNA) biogenesis in vivo and in vitro. Cleavage under targets and release using nuclease (CUT & RUN)-PCR, co-immunoprecipitation (Co-IP), and nuclear–cytoplasmic separation experiments clarified that C-PC blocked the nuclear translocation of activating transcription factor 3 (ATF3) to prevent the binding between ATF3 and transcription factor Smad3, thereby hindering lncIAPF transcription. Human antigen R (HuR) truncation experiment and RNA binding protein immunoprecipitation (RIP) were then performed to identify the binding domain with lncIAPF in the 244–322 aa of HuR. lncIAPF exerted its profibrogenic function through the binding protein HuR, a negative regulator of autophagy. In summary, C-PC promoted autophagy via down-regulating the lncIAPF–HuR-mediated signal pathway to alleviate pulmonary fibrosis, showing its potential as a drug for treating pulmonary fibrosis. Exploring how C-PC interacts with biological molecules will help us understand the mechanism of this drug and provide valuable target genes to design new drugs. ulmonary fibrosis is a chronic and irreversible progressive lung disease caused by various factors, such as age and environmental pollution. With countries stepping into an aging society and the seriousness of environmental pollution caused by global industrialization, the incidence of pulmonary fibrosis is annually increasing. However, no effective drug is available for pulmonary fibrosis treatment. C-phycocyanin (C-PC), extracted from blue-green algae, has good water solubility and antioxidation. This study elucidated that C-PC reinforces autophagy to block pulmonary fibrogenesis by inhibiting long noncoding RNA (lncRNA) biogenesis in vivo and in vitro. Cleavage under targets and release using nuclease (CUT & RUN)-PCR, co-immunoprecipitation (Co-IP), and nuclear–cytoplasmic separation experiments clarified that C-PC blocked the nuclear translocation of activating transcription factor 3 (ATF3) to prevent the binding between ATF3 and transcription factor Smad3, thereby hindering lncIAPF transcription. Human antigen R (HuR) truncation experiment and RNA binding protein immunoprecipitation (RIP) were then performed to identify the binding domain with lncIAPF in the 244–322 aa of HuR. lncIAPF exerted its profibrogenic function through the binding protein HuR, a negative regulator of autophagy. In summary, C-PC promoted autophagy via down-regulating the lncIAPF–HuR-mediated signal pathway to alleviate pulmonary fibrosis, showing its potential as a drug for treating pulmonary fibrosis. Exploring how C-PC interacts with biological molecules will help us understand the mechanism of this drug and provide valuable target genes to design new drugs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼