RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재SCOPUS

        ION IRRADLATION STUDIES OC CARGON FILMS PREPARED BY PLASMA ASSISTED CVD METHOD

        Bhattacharyya, Bhattacharyya, Somnath-,Sayeed, Ahmed,Kanjilal, Kanjilal, D.,Subramanyam, S.V 한국재료학회 1995 Fabrication and Characterization of Advanced Mater Vol.1 No.3

        Amorphous hydrogeneted carbon films were prepared by plasma assisted cvd metnod and their dc conductivity as studied as a function of temperature in the range of 300K to 10K. Films were then subjected to high energy(170MeV)$I^{+13}$ ion irradiation. After irradiation an marked change was observed in the conductivity and its temperature dependenc. The conductivity decreased by 2 to 3 orders of magnitude, room temperature activation energy increased and a gap appeared in the electronic structure. Photo-emission spectropic study on the material show a decrease in the $\pi$ states of the electronic density of states spectrum from UPS and a noticible change in the Cls peak shape in XPS.

      • KCI등재

        Some Common Fixed Point Theorems with Converse Commuting Mappings in Bicomplex-­valued Probabilistic Metric Space

        Sarmila Bhattacharyya,Tanmay Biswas,Chinmay Biswas 한국수학교육학회 2024 純粹 및 應用數學 Vol.31 No.3

        The probabilistic metric space as one of the important generalizations of metric space, was introduced by Menger [16] in 1942. Later, Choi et al. [6] initiated the notion of bicomplex-valued metric spaces (bi-CVMS). Recently, Bhattacharyya et al. [3] linked the concept of bicomplex-valued metric spaces and menger spaces, and initiated menger space with bicomplex-valued metric. Here, in this paper, we have taken probabilistic metric space with bicomplex-valued metric, i.e., bicomplexvalued probabilistic metric space and proved some common fixed point theorems using converse commuting mappings in this space.

      • Accumulation of Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn in urban soil and their mobility characteristics

        Bhattacharyya, Krishna G.,Mahanta, Mayur J. Techno-Press 2014 Advances in environmental research Vol.3 No.4

        Eight trace metals, Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn, were measured in the urban soil of Guwahati City, Assam, India from 31 sites representing five different types of land use, residential, commercial, industrial, public utilities, and roadside. Cd and Co occurred in very low concentrations (Cd << Co) in all types of land use without any significant variation from one type of land use to another. Ni concentrations were more than those of Co, and the concentrations depended on land use pattern. Average Cr and Cu concentrations were ${\geq}100mg/kg$, but Cr had a significantly higher presence in industrial land use. Pb concentrations showed similar trends. The two metals, Mn and Zn, were present in much larger amounts compared to the others with values ${\geq}300mg/kg$. Industrial and roadside soil contained much more Mn while commercial soil was enriched with Zn. Toxicity Characteristic Leaching Procedure (TCLP) was used for elucidating the mobility characteristics of the eight heavy metals. Mn suffered the highest leaching from commercial land (9.9 mg/kg on average) and also from other types of land. Co, Cu and Pb showed higher leachability from commercial soils but the leached concentrations were less than those of Mn. The two metals, Zn and Ni, were leached from residential land in considerable amounts. The TCLP showed Mn to be the most leachable metal and Cr the least.

      • SCISCIESCOPUS

        A cocktail of volatile compounds emitted from <i>Alcaligenes faecalis</i> JBCS1294 induces salt tolerance in <i>Arabidopsis thaliana</i> by modulating hormonal pathways and ion transporters

        Bhattacharyya, Dipto,Lee, Yong Hoon G. Fischer 2017 Journal of Plant Pathology Vol. No.

        <P>In our previous study we showed that volatile organic compounds (VOCs) from Alcaligenes faecalis JBCS1294 (JBCS1294) induced tolerance to salt stress in Arabidopsis thaliana by influencing the auxin and gibberellin pathways and upregulating the expression of key ion transporters. The aim of this study was to evaluate the contribution of each VOC and blends of the VOCs on the induction of salt tolerance and signaling pathways. The key VOCs emitted from JBCS1294 were dissolved in lanolin and applied to one side of bipartite I-plates that contained Arabidopsis seeds on Murashige and Skoog (MS) media supplemented with NaCl on the other side. Changes in plant growth were investigated using Arabidopsis mutant lines and hormone inhibitors, and gene expression was assessed by real-time PCR (qPCR). Among the VOCs, butyric acid conferred salt tolerance over a concentration range of 5.6 mu M (10 ng)-56 mM (100 mu g), whereas propionic and benzoic acid were effective at micromolar doses. Intriguingly, the optimized cocktail of the three VOCs increased fresh weight of Arabidopsis under salt stress compared to that achieved with each single compound. However, Arabidopsis growth was not promoted by the VOCs without salt stress. Exogenous indole-3-acetic acid (IAA) application arrested salt tolerance or growth promotion of Arabidopsis induced by volatiles from propionic acid, but not from butyric acid and an optimized volatile mixture of butyric acid, propionic acid, and benzoic acid (1PBB). High and intense auxin-responsive DR5:GUS activity was observed in the roots of Arabidopsis grown on media without salt via 1PBB, butyric acid, and benzoic acid. Growth promotion by the cocktail was inhibited in the eir1 mutant and in Col-0 plants treated with inhibitors of auxin and gibberellin. The present study clearly demonstrated the effects of individual VOCs and blends of VOCs from a rhizobacterial strain on the induction of salt stress. The results with the blend of VOCs, which mimics bacterial emissions in nature, may lead to a deeper understanding of the interaction between rhizobacteria and plants.</P>

      • KCI등재후보

        Insecticidal Efficacy of Porteresia coarctata (Roxb.) on Bio-chemical Alteration of Spodoptera litura (Fab.)

        Bhattacharyya Atanu,Goswami Arunava,Dihidar Shankar,Adhikari Sujit,Banerjee Sudip Kumar,Talapatra Soumendra Nath,Barik Bikas Ranjan,Bhattacharya Subir Kumar,Chandra Asit Kumar Korean Society of Sericultural Science 2007 International Journal of Industrial Entomology Vol.14 No.1

        Hexane extract of Porteresia coarctata (Roxb.) exhibits a toxic effect on the tissues of Spodoptera litura (F) while fed at the dose of 1000 and 2000 ppm thoroughly mixing with castor leaves (Ricinus communis L) after dissolving in DMSO at late fourth instar whereas only DMSO treated castor leaves were fed to control group. The larvae were put to rear at $28^{\circ}C{\pm}1^{\circ}C$, $76{\pm}4%$ R.H. under 12 L + 12 D photoperiodic regime. In test group insects substantial reduction of protein and DNA content was marked in fat body and midgut tissues compared to DMSO treated control group. The significant biochemical alterations in the midgut tissues and fat body of test group insects indicate the insecticidal property of the said plant extract that could be tested in facilitating the phenomenal stride in Integrated Pest Management.

      • KCI등재후보

        Modulation of 3D Bioprintability in Polysaccharide Bioink by Bioglass Nanoparticles and Multiple Metal Ions for Tissue Engineering

        Bhattacharyya Amitava,Khatun Mst Rita,Narmatha S.,Nagarajan R.,Noh Insup 한국조직공학과 재생의학회 2024 조직공학과 재생의학 Vol.21 No.2

        Background: Bioglasses are used in applications related to bone rehabilitation and repair. The mechanical and bioactive properties of polysaccharides like alginate and agarose can be modulated or improved using bioglass nanoparticles. Further essential metal ions used as crosslinker have the potential to supplement cultured cells for better growth and proliferation. Method: In this study, the alginate bioink is modulated for fabrication of tissue engineering scaffolds by extrusion-based 3D bioprinting using agarose, bioglass nanoparticles and combination of essential trace elements such as iron, zinc, and copper. Homogeneous bioink was obtained by in situ mixing and bioprinting of its components with twin screw extruder (TSE) based 3D bioprinting, and then distribution of metal ions was induced through post-printing diffusion of metal ions in the printed scaffolds. The mechanical and 3d bioprinting properties, microscopic structure, biocompatibility of the crosslinked alginate/agarose hydrogels were analyzed for different concentrations of bioglass. The adipose derived mesenchymal stem cells (ADMSC) and osteoblast cells (MC3T3) were used to evaluate this hydrogel’s biological performances. Results: The porosity of hydrogels significantly improves with the incorporation of the bioglass. More bioglass concentration results in improved mechanical (compressive, dynamic, and cyclic) and 3D bioprinting properties. Cell growth and extracellular matrix are also enhanced with bioglass concentration. Conclusion: For bioprinting of the bioinks, the advanced TSE head was attached to 3D bioprinter and in situ fabrication of cell encapsulated scaffold was obtained with optimized composition considering minimal effects on cell damage. Fabricated bioinks demonstrate a biocompatible and noncytotoxic scaffold for culturing MC3T3 and ADMSC, while bioglass controls the cellular behaviors such as cell growth and extracellular matrix formation. Background: Bioglasses are used in applications related to bone rehabilitation and repair. The mechanical and bioactive properties of polysaccharides like alginate and agarose can be modulated or improved using bioglass nanoparticles. Further essential metal ions used as crosslinker have the potential to supplement cultured cells for better growth and proliferation. Method: In this study, the alginate bioink is modulated for fabrication of tissue engineering scaffolds by extrusion-based 3D bioprinting using agarose, bioglass nanoparticles and combination of essential trace elements such as iron, zinc, and copper. Homogeneous bioink was obtained by in situ mixing and bioprinting of its components with twin screw extruder (TSE) based 3D bioprinting, and then distribution of metal ions was induced through post-printing diffusion of metal ions in the printed scaffolds. The mechanical and 3d bioprinting properties, microscopic structure, biocompatibility of the crosslinked alginate/agarose hydrogels were analyzed for different concentrations of bioglass. The adipose derived mesenchymal stem cells (ADMSC) and osteoblast cells (MC3T3) were used to evaluate this hydrogel’s biological performances. Results: The porosity of hydrogels significantly improves with the incorporation of the bioglass. More bioglass concentration results in improved mechanical (compressive, dynamic, and cyclic) and 3D bioprinting properties. Cell growth and extracellular matrix are also enhanced with bioglass concentration. Conclusion: For bioprinting of the bioinks, the advanced TSE head was attached to 3D bioprinter and in situ fabrication of cell encapsulated scaffold was obtained with optimized composition considering minimal effects on cell damage. Fabricated bioinks demonstrate a biocompatible and noncytotoxic scaffold for culturing MC3T3 and ADMSC, while bioglass controls the cellular behaviors such as cell growth and extracellular matrix formation.

      • Study of rganized Assemblies and Surfaces Using Picosecond Lasers

        Bhattacharyya, Kankan Korean Society of Photoscience 1999 Journal of Photosciences Vol.6 No.3

        Dynamics of many ultrafast processes are markedly slowed down in various organized molecular assemblies compared to ordinary liquids. We will show that the solvation dynamics of water molecules is affected amost dramatically and is retarded by 3 ∼4 orders of magnitude in microemulsions, micells and lipids. We will also discuss how the access to fewer water molucules and the drastically altered local pH in an organized asembly affected the excited state proton transfer processes. Finally, we will show how surface second haromonic generation can be used to study the air-water surface.

      • SCIESCOPUS

        Investigation of mean wind pressures on 'E' plan shaped tall building

        Bhattacharyya, Biswarup,Dalui, Sujit Kumar Techno-Press 2018 Wind and Structures, An International Journal (WAS Vol.26 No.2

        Due to shortage of land and architectural aesthetics, sometimes the buildings are constructed as unconventional in plan. The wind force acts differently according to the plan shape of the building. So, it is of utter importance to study wind force or, more specifically wind pressure on an unconventional plan shaped tall building. To address this issue, this paper demonstrates a comprehensive study on mean pressure coefficient of 'E' plan shaped tall building. This study has been carried out experimentally and numerically by wind tunnel test and computational fluid dynamics (CFD) simulation respectively. Mean wind pressures on all the faces of the building are predicted using wind tunnel test and CFD simulation varying wind incidence angles from $0^{\circ}$ to $180^{\circ}$ at an interval of $30^{\circ}$. The accuracy of the numerically predicted results are measured by comparing results predicted by CFD with experimental results and it seems to have a good agreement with wind tunnel results. Besides wind pressures, wind flow patterns are also obtained by CFD for all the wind incidence angles. These flow patterns predict the behavior of pressure variation on the different faces of the building. For better comparison of the results, pressure contours on all the faces are also predicted by both the methods. Finally, polynomial expressions as the sine and cosine function of wind angle are proposed for obtaining mean wind pressure coefficient on all the faces using Fourier series expansion. The accuracy of the fitted expansions are measured by sum square error, $R^2$ value and root mean square error.

      • SCIEKCI등재

        Taxonomic and Functional Changes of Bacterial Communities in the Rhizosphere of Kimchi Cabbage After Seed Bacterization with Proteus vulgaris JBLS202

        Bhattacharyya, Dipto,Duta, Swarnalee,Yu, Sang-Mi,Jeong, Sang Chul,Lee, Yong Hoon The Korean Society of Plant Pathology 2018 Plant Pathology Journal Vol.34 No.4

        Maintenance of a beneficial microbial community, especially in the rhizosphere, is indispensable for plant growth and agricultural sustainability. In this sense, plant growth-promoting rhizobacteria (PGPR) have been extensively studied for their role in plant growth promotion and disease resistance. However, the impact of introducing PGPR strains into rhizosphere microbial communities is still underexplored. We previously found that the Proteus vulgaris JBLS202 strain (JBLS202) promoted growth of Kimchi cabbage and altered the relative abundance of total bacteria and Pseudomonas spp. in the treated rhizosphere. To extend these findings, we used pyrosequencing to analyze the changes in bacterial communities in the rhizosphere of Kimchi cabbage after introduction of JBLS202. The alterations were also evaluated by taxon-specific realtime PCR (qPCR). The pyrosequencing data revealed an increase in total bacteria abundance, including specific groups such as Proteobacteria, Acidobacteria, and Actinobacteria, in the treated rhizosphere. Time-course qPCR analysis confirmed the increase in the abundance of Acidobacteria, Actinobacteria, Alphaproteobacteria, and Betaproteobacteria. Furthermore, genes involved in nitrogen cycling were upregulated by JBLS202 treatment indicating changes in ecological function of the rhizosphere soil. Overall, these results indicate that introduction of JBLS202 alters both the composition and function of the rhizosphere bacterial community, which can have direct and indirect effects on plant growth. Therefore, we propose that long-term changes in bacterial composition and community-level function need to be considered for practical use of PGPRs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼