RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        BaMoO<sub>4</sub>:Tb<sup>3+</sup> 형광체의 발광과 농도 소광 특성

        조신호,김진대,황동현,조선욱,Cho, Shinho,Kim, Jindae,Hwang, Donghyun,Cho, Seon-Woog 한국재료학회 2016 한국재료학회지 Vol.26 No.2

        $BaMoO_4:Tb^{3+}$ phosphor powders were synthesized with different concentrations of $Tb^{3+}$ ions using the solid-state reaction method. XRD patterns showed that all the phosphors, irrespective of the concentration of $Tb^{3+}$ ions, had tetragonal systems with two main (112) and (004) diffraction peaks. The excitation spectra of the $Tb^{3+}$-doped $BaMoO_4$ phosphors consisted of an intense broad band centered at 290 nm in the range of 230-330 nm and two weak bands. The former broad band corresponded to the $4f^8{\rightarrow}4f^75d^1$ transition of $Tb^{3+}$ ions; the latter two weak bands were ascribed to the $^7F_2{\rightarrow}^5D_3$ (471 nm) and $^7F_6{\rightarrow}^5D_4$ (492 nm) transitions of $Tb^{3+}$. The main emission band, when excited at 290 nm, showed a strong green band at 550 nm arising from the $^5D_4{\rightarrow}^7F_5$ transition of $Tb^{3+}$ ions. As the concentration of $Tb^{3+}$ increased from 1 to 10 mol%, the intensities of all the emission lines gradually increased, approached maxima at 10 mol% of $Tb^{3+}$ ions, and then showed a decreasing tendency with further increase in the $Tb^{3+}$ ions due to the concentration quenching effect. The critical distance between neighboring $Tb^{3+}$ ions for concentration quenching was calculated and found to be $12.3{\AA}$, which indicates that dipole-dipole interaction was the main mechanism for the concentration quenching of the $^5D_4{\rightarrow}^7F_5$ transition of $Tb^{3+}$ in the $BaMoO_4:Tb^{3+}$ phosphors.

      • SCOPUSKCI등재

        CaAl<sub>2</sub>O<sub>4</sub>:RE<sup>3+</sup>(RE = Tb, Dy) 형광체의 발광 특성

        조신호,Cho, Shinho 한국재료학회 2016 한국재료학회지 Vol.26 No.3

        $CaAl_2O_4:RE^{3+}$(RE = Tb or Dy) phosphor powders were synthesized with different contents of activator ions $Tb^{3+}$ and $Dy^{3+}$ by using the solid-state reaction method. The effects of the content of activator ions on the crystal structure, morphology, and emission and excitation properties of the resulting phosphor particles were investigated. XRD patterns showed that all the synthesized phosphors had a monoclinic system with a main (220) diffraction peak, irrespective of the content and type of $Tb^{3+}$ and $Dy^{3+}$ ions. For the $Tb^{3+}$-doped $CaAl_2O_4$ phosphor powders, the excitation spectra consisted of one broad band centered at 271 nm in the range of 220-320 nm and several weak peaks; the main emission band showed a strong green band at 552 nm that originated from the $^5D_4{\rightarrow}^7F_5$ transition of $Tb^{3+}$ ions. For the $Dy^{3+}$-doped $CaAl_2O_4$ phosphor, the emission spectra under ultraviolet excitation at 298 nm exhibited one strong yellow band centered at 581 nm and two weak bands at 488 and 672 nm. Concentration-dependent quenching was observed at 0.05 mol of $Tb^{3+}$ and $Dy^{3+}$ contents in the $CaAl_2O_4$ host lattice.

      • KCI등재

        증착 온도에 따른 La<sub>2</sub>MoO<sub>6</sub>:Dy<sup>3+</sup>,Eu<sup>3+</sup> 형광체 박막의 광학 특성

        조신호,Cho, Shinho 한국전기전자재료학회 2019 전기전자재료학회논문지 Vol.32 No.5

        $Dy^{3+}$ and $Eu^{3+}$-co-doped $La_2MoO_6$ phosphor thin films were deposited on sapphire substrates by radio-frequency magnetron sputtering at various growth temperatures. The phosphor thin films were characterized using X-ray diffraction (XRD), scanning electron microscopy, ultraviolet-visible spectroscopy, and fluorescence spectrometry. The optical transmittance, absorbance, bandgap, and photoluminescence intensity of the $La_2MoO_6$ phosphor thin films were found to depend on the growth temperature. The XRD patterns demonstrated that all the phosphor thin films, irrespective of growth temperatures, had a tetragonal structure. The phosphor thin film deposited at a growth temperature of $100^{\circ}C$ indicated an average transmittance of 85.3% in the 400~1,100 nm wavelength range and a bandgap energy of 4.31 eV. As the growth temperature increased, the bandgap energy gradually decreased. The emission spectra under ultraviolet excitation at 268 nm exhibited an intense red emission line at 616 nm and a weak emission line at 699 nm due to the $^5D_0{\rightarrow}^7F_2$ and $^5D_0{\rightarrow}^7F_4$ transitions of the $Eu^{3+}$ ions, respectively, and also featured a yellow emission band at 573 nm, resulting from the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transition of the $Dy^{3+}$ ions. The results suggest that $La_2MoO_6$ phosphor thin films can be used as light-emitting layers for inorganic thin film electroluminescent devices.

      • KCI등재

        사파이어와 석영 기판 위에 성장된 SrSnO<sub>3</sub>:Tb<sup>3+</sup> 녹색 형광체 박막의 특성

        조신호,Cho, Shinho 한국전기전자재료학회 2016 전기전자재료학회논문지 Vol.29 No.9

        $SrSnO_3:Tb^{3+}$ phosphor thin films were prepared on sapphire and quartz substrates in the growth temperature range of $100{\sim}400^{\circ}C$ by using the radio frequency magnetron sputtering deposition. The resulting $SrSnO_3:Tb^{3+}$ thin films were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible-infrared spectrophotometer, and photoluminescence spectrometer. The results indicated that the morphology, optical transmittance, band gap energy, and luminescence intensity of the phosphor thin films significantly depended on the growth temperature. All the thin films, regardless of the type of substrate, showed an amorphous behavior. As for the thin films deposited on sapphire substrate, the maximum crystallite size was obtained at a growth temperature of $400^{\circ}C$ and the strongest emission was green at 544 nm arising from the $^5D_4{\rightarrow}^7F_5$ transition of Tb3+. The average optical transmittance for all the thin films grown on sapphire and quartz substrates was decreased as the growth temperature increased from 100 to $400^{\circ}C$. The results suggest that the optimum growth temperatures for depositing highly-luminescent $SrSnO_3:Tb^{3+}$ phosphor thin films on sapphire and quartz substrates are 400 and $300^{\circ}C$, respectively.

      • KCI등재

        열처리 온도가 SrWO<sub>4</sub>:Sm<sup>3+</sup> 박막의 구조, 표면, 발광 특성에 미치는 효과

        조신호,Shinho Cho 한국전기전자재료학회 2023 전기전자재료학회논문지 Vol.36 No.6

        The effects of the annealing temperature on the structural, morphological, and luminescent properties of SrWO<sub>4</sub>:Sm<sup>3+</sup> thin films grown on quartz substrates by radio-frequency magnetron sputtering were investigated. The thin films were annealed at various annealing temperatures for 20 min in a rapid thermal annealer after growing the thin films. The experimental results showed that the annealing temperature has a significant effect on the properties of the SrWO<sub>4</sub>:Sm<sup>3+</sup> thin films. The crystal structure of the as-grown SrWO<sub>4</sub>:Sm<sup>3+</sup> thin films was transformed from amorphous to crystalline after annealing at 800℃. The preferred orientation along (112) plane and a significant increase in average grain size by 820 nm were observed with increasing the annealing temperature. The average optical transmittance in the wavelength range of 500~1,100 nm was decreased from 72.0% at 800℃ to 44.2% at an annealing temperature of 1,000℃, where the highest value in the photoluminescence intensity was obtained. In addition to the red-shift of absorption edge, a higher annealing temperature caused the optical band gap energy of the SrWO<sub>4</sub>:Sm<sup>3+</sup> thin films to fall rapidly. These results suggest that the structural, morphological, and luminescent properties of SrWO<sub>4</sub>:Sm<sup>3+</sup> thin films can be controlled by varying annealing temperature.

      • SCOPUSKCI등재

        BaSiO<sub>3</sub>:RE<sup>3+</sup> (RE = Sm, Eu) 형광체의 합성과 광학 특성

        조신호,Cho, Shinho 한국재료학회 2019 한국재료학회지 Vol.29 No.6

        $BaSiO_3:RE^{3+}$ (RE = Sm or Eu) phosphor powders with different concentrations of activator ions are synthesized using the solid-state reaction method. The effects of the concentration of activator ions on the structural, photoluminescent, and morphological properties of the barium silicate phosphors are investigated. X-ray diffraction data reveals that the crystal structure of all the phosphors, regardless of the type and the concentration of the activator ions, is an orthorhombic system with a main (111) diffraction peak. The grain particles agglomerate together to form larger clusters with increasing concentrations of activator ions. The emission spectra of the $Sm^{3+}$-doped $BaSiO_3$ phosphors under excitation at 406 nm consist of an intense orange band at 604 nm and three weak bands centered at 567, 651, and 711 nm, respectively. As the concentration of $Sm^{3+}$ increases from 1 to 5 mol%, the intensities of all the emission bands gradually increase, reach maxima at 5 mol% of $Sm^{3+}$ ions, and then decrease significantly with further increases in the $Sm^{3+}$ concentration due to the concentration quenching phenomenon. For the $Eu^{3+}$-doped $BaSiO_3$ phosphors, a strong red emission band at 621 nm and several weak bands are observed. The optimal orange and red light emissions of the $BaSiO_3$ phosphors are obtained when the concentrations of $Sm^{3+}$ and $Eu^{3+}$ ions are 5 mol% and 15 mol%, respectively.

      • KCI우수등재

        Dy<sup>3+</sup> 이온이 도핑된 BaMoO<sub>4</sub> 형광체의 합성과 발광 특성

        조신호,Cho, Shinho 한국진공학회 2013 Applied Science and Convergence Technology Vol.22 No.4

        $Dy^{3+}$ 이온이 도핑된 $BaMoO_4$ 형광체 분말을 고상반응법으로 합성하였으며, 형광체의 결정 구조, 입자의 형상과 크기, 흡광과 발광 특성을 조사하였다. 모든 형광체 분말의 결정 구조는 $Dy^{3+}$ 이온의 몰 비에 관계없이 주 회절 피크 (112)를 갖는 정방 정계이었다. $Dy^{3+}$ 이온의 몰 비가 증가함에 따라 결정 입자는 용해되면서 큰 덩어리 형태의 결정 입자를 형성하였다. 흡광 스펙트럼은 293 nm에 피크를 갖는 전하 전달 밴드와 230~320 nm 영역에서 상대적으로 세기가 약한 다수의 $Dy^{3+}$ 이온의 전이 신호로 구성되었다. 발광 스펙트럼의 경우에 $Dy^{3+}$ 이온의 $^4F_{9/2}{\rightarrow}^6H_{11/2}$와 $^4F_{9/2}{\rightarrow}^6H_{9/2}$ 전이에 의한 666 nm와 754 nm에 피크를 갖는 적색 발광의 세기는 미약하였고, $^4F_{9/2}{\rightarrow}^6H_{15/2}$와 $^4F_{9/2}{\rightarrow}^6H_{13/2}$ 전이에 의한 각각 486 nm와 577 nm에 피크를 갖는 청색과 황색 발광의 세기는 상대적으로 매우 컸다. 실험 결과는 $Dy^{3+}$의 황색과 청색의 발광 세기 비를 제어함으로써 백색 발광을 구현할 수 있음을 제시한다. $Dy^{3+}$-doped $BaMoO_4$ phosphor powders were synthesized by using the solid-state reaction method and their crystalline structure, morphology and size of particles, excitation and emission properties were investigated. The structure of all the phosphor powders, irrespective of the mol ratio of $Dy^{3+}$ ions, was found to be the tetragonal system with the main diffraction peak at (112) plane. The grain particles agglomerate together to form larger clusters with increasing the mol ratio of $Dy^{3+}$ ions. The excitation spectra were composed of a broad band centered at 293 nm and weak multiline peaked in the range of 230~320 nm, which were due to the transitions of $Dy^{3+}$ ions. The emission of the phosphors peaking at 666 and 754 nm, originating from the transitions of $^4F_{9/2}{\rightarrow}^6H_{11/2}$ and $^4F_{9/2}{\rightarrow}^6H_{9/2}$ of $Dy^{3+}$ ions, was rather weak, while the intensity of blue and yellow emission peaking at 486 nm and 577 nm due to the transitions of $^4F_{9/2}{\rightarrow}^6H_{15/2}$ and $^4F_{9/2}{\rightarrow}^6H_{13/2}$ of $Dy^{3+}$ ions was significantly stronger. The experimental results suggest that the white-light emission can be realized by controlling the yellow-to-blue intensity ratio of $Dy^{3+}$ emission.

      • KCI등재

        열처리 온도 변화에 따른 라디오파 마그네트론 스퍼터링으로 성장된 MgMoO<sub>4</sub>:Eu<sup>3+</sup> 형광체 박막의 특성

        조신호,Cho, Shinho 한국태양광발전학회 2016 Current Photovoltaic Research Vol.4 No.1

        $Eu^{3+}$-activated $MgMoO_4$ phosphor thin films were grown at $400^{\circ}C$ on quartz substrates by radio-frequency magnetron sputter deposition from a 15 mol% Eu-doped $MgMoO_4$ target. After the deposition, the phosphor thin films were annealed at several temperatures for 30 min in air. The influence of thermal annealing temperature on the structural and optical properties of $MgMoO_4:Eu^{3+}$ phosphor thin films was investigated by using X-ray diffraction (XRD), photoluminescence (PL), and ultraviolet-visible spectrophotometry. The transmittance, optical band gap, and intensities of the luminescence and excitation spectra of the thin films were found to depend on the thermal annealing temperature. The XRD patterns indicated that all the thin films had a monoclinic structure with a main (220) diffraction peak. The highest average transmittance of 91.3% in the wavelength range of 320~1100 nm was obtained for the phosphor thin film annealed at $800^{\circ}C$. At this annealing temperature the optical band gap energy was estimated as 4.83 eV. The emission and excitation spectra exhibited that the $MgMoO_4:Eu^{3+}$ phosphor thin films could be effectively excited by near ultraviolet (281 nm) light, and emitted the dominant 614 nm red light. The results show that increasing RTA temperature can enhance $Eu^{3+}$ emission and excitation intensity.

      • KCI우수등재

        CaMoO<sub>4</sub>:RE<sup>3+</sup> (RE=Eu, Dy) 형광체의 제조와 광학 특성

        조신호,Cho, Shinho 한국진공학회 2013 Applied Science and Convergence Technology Vol.22 No.2

        희토류 이온 $Eu^{3+}$와 $Dy^{3+}$가 각각 도핑된 $CaMoO_4$ 광체 분말을 고상반응법으로 합성하였다. 모든 형광체 분말의 결정 구조는 활성제 이온의 종류와 농도비에 관계없이 주 회절 피크(112)를 갖는 정방 정계이었다. $Eu^{3+}$ 이온이 도핑된 형광체의 경우에, $Eu^{3+}$ 이온의 농도가 0.01~0.10 mol 영역에서 결정 입자의 크기는 전반적으로 증가하였고, 비교적 균일한 크기 분포를 가지면서 조약돌 형태를 나타내었으며, 흡광 스펙트럼은 311 nm를 정점으로 넓게 퍼져있는 전하 전달 밴드와 파장 영역 360~470nm에서 약한 피크를 갖는 다수의 흡수선이 관측되었으며, 주 발광 스펙트럼은 $Eu^{3+}$ 이온의 $^5D_0{\rightarrow}^7F_2$ 전이에 의한 618 nm에 피크를 갖는 강한 적색 발광이었다. $Dy^{3+}$ 이온이 도핑된 분말의 경우에, 흡광 스펙트럼은 303 nm에 피크를 갖는 전하 전달 밴드와 상대적으로 세기가 약한 다수의 $Dy^{3+}$ 이온의 전이 신호가 발생하였으며, 주 발광 스펙트럼은 $^4F_{9/2}{\rightarrow}^7H_{13/2}$ 전이에 의한 578 nm에 피크를 갖는 황색 발광 스펙트럼이 관측되었다. Rare earth ions, either $Eu^{3+}$ or $Dy^{3+}$-doped $CaMoO_4$ phosphors were synthesized by using the solid-state reaction method. The crystalline structure of all the phosphor powders, irrespective of the type and concentration of activator ions, was found to be a tetragonal system with the main diffraction peak at (112) plane. For $Eu^{3+}$-doped $CaMoO_4$ phosphors, the grain particles showed an increasing tendency and the pebble-like patterns with a very homogeneous size distribution in the range of 0.01~0.10 mol of $Eu^{3+}$ ions concentration, and the excitation spectra were composed of a broad band centered at 311 nm and weak multiline peaked in the range of 360~470 nm. The dominant emission spectrum was the strong red emission centered at 618 nm due to the $^5D_0{\rightarrow}^7F_2$ transition of $Eu^{3+}$ ions. For $Dy^{3+}$-doped $CaMoO_4$ powders, excitation spectra showed a charge transfer band centered at 303 nm and relatively weak bands resulting from the transitions of $Dy^{3+}$ ions and the main yellow emission spectrum was observed at 578 nm, which was assigned to the $^4F_{9/2}{\rightarrow}^7H_{13/2}$ transition of $Dy^{3+}$ ions.

      • KCI등재

        라디오파 마그네트론 스퍼터링으로 성장한 질소와 알루미늄 도핑된 ZnO 박막의 특성

        조신호(Shinho Cho),조선욱(Seon-Woog Cho) 한국표면공학회 2008 한국표면공학회지 Vol.41 No.4

        Nitrogen and aluminum codoped ZnO (NAZO) thin films were grown on glass substrates with changing the nitrogen flow ratio by radio-frequency magnetron sputtering. The structural, optical, and electrical properties of the NAZO films were investigated. The surface morphologies and the structural properties of the thin films were analyzed by using the X-ray diffraction and scanning electron microscopy. The NAZO thin film, deposited at nitrogen flow ratio of 0%, showed a strongly c-axis preferred orientation and the lowest resistivity of 3.2×10?³ Ω㎝. The intensity of ZnO (002) diffraction peak was decreased gradually with increasing the nitrogen flow ratio. The optical properties of the films were measured by UV-VIS spectrophotometer and the optical transmittances for all the samples were found to be an average 90% in the visible range. Based on the transmittance value, the optical bandgap energy for the NAZO thin film deposited at nitrogen flow ratio of 0% was determined to be 3.46 eV. As for the electrical properties, the carrier concentration and the hall mobility were decreased, but the electrical resistivity was increased as the nitrogen flow ratio was increased.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼