RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      • 좁혀본 항목

      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
          • 원문제공처
          • 등재정보
          • 학술지명
          • 주제분류
          • 발행연도
          • 작성언어
          • 저자

        오늘 본 자료

        • 오늘 본 자료가 없습니다.
        더보기
        • 무료
        • 기관 내 무료
        • 유료
        • KCI등재

          주제어 프로파일링 및 동시출현분석을 통한 지능정보시스템 연구의 정체성에 관한 연구

          윤승정(Seong Jeong Yoon), 김민용(Min Yong Kim) 한국지능정보시스템학회 2016 지능정보연구 Vol.22 No.4

          본 연구는 한국지능정보시스템학회의 고유한 연구영역을 파악하고자 지능정보연구 학술지에 최근 3년 동안 게재된 논문들을 대상으로 키워드를 수집하여 프로파일링 기법과 동시출현빈도를 분석하였다. 이를 통하여 지능정보시스템 연구의 정통성과 정체성을 밝히는 동시에 향후 추구해야할 연구영역을 제시하고자 한다. 연구 정체성에 대한 상대적 위치를 파악하기 위하여 한국지능정보시스템학회 뿐만 아니라 유사학회에 해당하는 한국경영정보학회 그리고 한국정보시스템학회의 키워드 및 연구방법론을 수집하여 비교하였다. 또한, 한국지능정보시스템학회에서 인공지능/데이터마이닝, 지능형인터넷, 지식경영에 대한 주요 분야를 중점적으로 다루고 있음을 고려할 때 각 분야의 대표적인 학회로 한국빅데이터서비스학회 및 한국빅데이터학회, 한국인터넷전자상거래학회, 한국지식경영학회의 연구 경향을 각각 비교 분석하였다. 키워드 분석 결과만을 요약하면, 한국지능정보시스템학회는 키워드 부문에서는 텍스트마이닝 , 데이터 마이닝 및 추천시스템에 집중하고 있다는 것을 알 수 있었다. 인공지능/데이터마이닝 분야에서는 빅데이터 개념 자체와 감성분석에 초점을 두고 있고, 지능형인터넷 분야에서는 SNS와 구매의도, 신뢰, 기술수용모델에 집중하고 있었다. 지식경영 분야에서는 지식관리, 지식 공유 키워드에 집중함을 발견할 수 있었다. 더 나아가 한국지능정보시스템학회 뿐만 아니라 유사 연구 분야에서 생태계 전반적 융합 가능성을 진단해 보았다. The purpose of this study is to find the research identity of the Korea Intelligent Information Systems Society through the profiling methods and co-word analysis in the most recent three-year("2014~"2016) study to collect keyword. In order to understand the research identity for intelligence information system, we need that the relative position of the study will be to compare identity by collecting keyword and research methodology of The korea Society of Management Information Systems and Korea Association of Information Systems, as well as Korea Intelligent Information Systems Society for the similar. Also, Korea Intelligent Information Systems Society is focusing on the four research areas such as artificial intelligence/data mining, Intelligent Internet, knowledge management and optimization techniques. So, we analyze research trends with a representative journals for the focusing on the four research areas. A journal of the data-related will be investigated with the keyword and research methodology in Korean Society for Big Data Service and the Korean Journal of Big Data. Through this research, we will find to research trends with research keyword in recent years and compare against the study methodology and analysis tools. Finally, it is possible to know the position and orientation of the current research trends in Korea Intelligent Information Systems Society. As a result, this study revealed a study area that Korea Intelligent Information Systems Society only be pursued through a unique reveal its legitimacy and identity. So, this research can suggest future research areas to intelligent information systems specifically. Furthermore, we will predict convergence possibility of the similar research areas and Korea Intelligent Information Systems Society in overall ecosystem perspectives.

        • KCI등재

          유비쿼터스 환경에서 복합 상품 구성을 위한 지능형 여행 정보 시스템에 대한 연구 -의미론적 웹 서비스 중심

          이현정,손미애,Lee,Hyun-Jung,Sohn,Mye-M. 한국지능정보시스템학회 2006 지능정보연구 Vol.12 No.2

          In this research, we are suggesting intelligent information system fur traveling which is focusing on product bundling and integration of information from various resources on ubiquitous computing environment. It is necessary for products structure to easily integrate according to customers' requirements because traveling product is integrated by various traveling resources like airline, hotel reservation, and so on. To guarantee of traveler's mobility in ubiquitous computing environment, we need product bundling and modification process to configure products and semantic web service which supports ontology based traveling information system to support immediate integrating of traveling information from various resources. In this research, we offer a product bundling and integration of information. It is based on the semantic web service, with several components (single products) to reconfigure a bundle of traveling products. 본 논문에서는 유비쿼터스 환경에서 유동 소비자에 대한 서비스 이용의 유동성을 보장할 수 있는 지능형 여행정보서비스를 제안하고자 한다. 본 시스템은 유비쿼터스 환경에서 여행자가 필요로 하는 다양한 정보 획득을 돕기 위해 단일상품 묶음을 통한 복합상품 구성과 시맨틱 웹 서비스에 기반한 정보의 구조적 표현을 목적으로 설계되었다. 여행정보시스템에 연관된 상품들은 호텔, 항공사. 자동차대여, 여행지 정보, 음식점 및 Business Trip 등으로 여행자의 요구 및 상황의 변화에 맞게 연관상품의 복합상품구성을 위한 지능형 여행 최적 정보시스템의 연구가 요구된다. 이를 위해 털 연구에서는 여행서비스 지원을 위해, 첫째 여행자의 요구에 따른 단일상품의 복합상품화를 위한 방법론(Product bundling and modification)을 제안하였다. 둘째, 복합상품을 구성하기 위해 개별 정보시스템에 이질적인 형태로 저장되어있는 단일상품에 대한 정보를 공유하기 위해 시맨틱 웹 기반 정보의 구조적 표현에 관하여 제안한다. 이에 본 논문에서는 OWL 기반의 온톨로지를 구축하였다. 따라서 온톨로지 기반의 여행정보시스템은 향후 시맨틱 웹서비스 기반의 지능형 여행정보시스템 구축을 위한 초석으로 활용될 것이다.

        • KCI등재

          Development of the Knowledge-based Systems for Anti-money Laundering in the Korea Financial Intelligence Unit

          Kyung-shik Shin(신경식), Hyun-jung Kim(김현정), Hyo-sin Kim(김효신) 한국지능정보시스템학회 2008 지능정보연구 Vol.14 No.2

          본 논문은 금융기관을 이용한 자금세탁 및 불법적인 외화유출 방지를 목적으로 자금세탁 관련 혐의거래보고 등 금융정보를 수집하여 심사하는 금융정보분석원에 지식기반시스템을 도입한 사례연구이다. 한정된 심사인력으로 기하급수적으로 증가하는 협의거래보고에 효과적으로 대응하기 위하여 지식기반시스템의 도입은 필수적이라고 할 수 있다. 이렇게 구축된 지식기반시스템은 보고된 혐의거래를 여과(filtering)하여 자금세탁혐의가 인정된 정보만을 수사기관에 제공하는 심사 및 분석 업무의 효과성과 효율성을 극대화시킨다. 특히, 금융정보분석원은 여러 금융기관들로부터 보고된 혐의거래정보와 심사분석과정에서 유관기관으로부터 수집된 여러 종류의 정보가 집중되기 때문에 축적된 정보를 체계적으로 관리 및 활용할 수 있는 지식 베이스의 구축이 더욱 필요하다. 금융정보분석원은 많은 정보가 집중되는 만큼 축적된 데이터를 활용하여 자금세탁 관련 지식을 창출하는 업무를 수행해야만 하는 의무도 가지고 있기 때문이다. 이를 위하여 금융정보분석원의 심사분석시스템이 자금세탁방지를 위한 지식의 창출과 지식의 관리 측면까지 고려된 전체적인 프레임워크 하에서 지식기반시스템으로써의 토대를 마련하였다는 점에서 의의가 크다고 할 수 있다. This case study shows constructing the knowledge-based system using a rule-based approach for detecting illegal transactions regarding money laundering in the Korea Financial Intelligence Unit (KoFIU). To better manage the explosive increment of low risk suspicious transactions reporting from financial institutions, the adoption of a knowledge-based system in the KoFIU is essential. Also since different types of information from various organizations are converged into the KoFIU, constructing a knowledge-based system for practical use and data management regarding money laundering is definitely required. The success of the financial information system largely depends on how well we can build the knowledge-base for the context. Therefore we designed and constructed the knowledge-based system for anti-money laundering by committing domain experts of each specific financial industry co-worked with a knowledge engineer. The outcome of the knowledge base implementation, measured by the empirical ratio of Suspicious Transaction Reports (STRs) reported to law enforcements, shows that the knowledge-based system is filtering STRs in the primary analysis step efficiently, and so has made great contribution to improve efficiency and effectiveness of the analysis process. It can be said that establishing the foundation of the knowledge base under the entire framework of the knowledge-based system for consideration of knowledge creation and management is indeed valuable.

        • KCI등재

          국방 온톨로지를 통한 지능형 의사결정지원시스템 구축 및 활용 - 공군 군수상황관리체계 적용 사례

          조원기(Wongi Jo), 김학진(Hak-Jin Kim) 한국지능정보시스템학회 2019 지능정보연구 Vol.25 No.2

          제 4차 산업혁명의 초연결 환경에서 발생하는 많은 양의 데이터는 제 4차 산업혁명을 기존의 생산 환경과 구분지어 주는 주요한 요소이다. 이러한 환경은 데이터를 필요로 하는 동시에 데이터를 생산하는 양면적인 특징을 가진다. 때문에 앞으로의 정보 시스템은 기존의 정보시스템보다 양적인 측면에서 더 많은 데이터를 처리해야 하며, 질적인 측면에서는 많은 데이터 중 사용자의 목적에 부합하는 목표 데이터만을 추출하는 능력이 요구된다. 작은 규모의 정보 시스템에서는 사람이 그 시스템을 정확히 이해하고 필요한 정보를 획득하는 것이 가능하지만, 시스템에 대해 정확한 이해가 어려워진 다양하고 복잡한 시스템에서는 원하는 정보를 획득하는 것이 점점 더 어려워진다. 이러한 문제는 데이터를 사람뿐 아니라 컴퓨터가 이해할 수 있는 온톨로지로 표현하여 다양한 정보처리가 가능하도록 하는 시맨틱 웹(Semantic Web) 구축이 해결책이 될 수 있다. 군에서도 현재 대부분의 업무가 정보 시스템을 통해 이루어지고 있는데, 정보의 입력이나 가공 등 단순처리중심으로 구축된 기존 시스템이 점점 더 많은 양의 데이터를 포함하게 되면서 시스템을 쉽게 활용하기 위한 노력이 필요한 상황이다. 본 연구에서는 온톨로지를 통한 지능형 의사결정지원시스템의 예로 온톨로지 기반 군수상황관리체계를 제안하고자 한다. 온톨로지 기반 군수상황관리체계는 기존의 군수정보체계의 복잡한 정보를 직관적으로 보여주기 위해 구축된 군수상황관리체계를 온톨로지를 통해 구축하였으며, 성과기반군수지원 계약관리, 부품사전 등의 유용한 기능을 추가 식별하여 온톨로지에 포함하였다. 또한 구축된 온톨로지가 의사결정지원에 활용할 수 있는 지를 확인하기 위해 시맨틱 웹 기술을 통해 기본적인 질의응답은 물론 추론 및 함수를 통한 분석기능을 구현하였다. The large amount of data that emerges from the initial connection environment of the Fourth Industrial Revolution is a major factor that distinguishes the Fourth Industrial Revolution from the existing production environment. This environment has two-sided features that allow it to produce data while using it. And the data produced so produces another value. Due to the massive scale of data, future information systems need to process more data in terms of quantities than existing information systems. In addition, in terms of quality, only a large amount of data, Ability is required. In a small-scale information system, it is possible for a person to accurately understand the system and obtain the necessary information, but in a variety of complex systems where it is difficult to understand the system accurately, it becomes increasingly difficult to acquire the desired information. In other words, more accurate processing of large amounts of data has become a basic condition for future information systems. This problem related to the efficient performance of the information system can be solved by building a semantic web which enables various information processing by expressing the collected data as an ontology that can be understood by not only people but also computers. For example, as in most other organizations, IT has been introduced in the military, and most of the work has been done through information systems. Currently, most of the work is done through information systems. As existing systems contain increasingly large amounts of data, efforts are needed to make the system easier to use through its data utilization. An ontology-based system has a large data semantic network through connection with other systems, and has a wide range of databases that can be utilized, and has the advantage of searching more precisely and quickly through relationships between predefined concepts. In this paper, we propose a defense ontology as a method for effective data management and decision support. In order to judge the applicability and effectiveness of the actual system, we reconstructed the existing air force munitions situation management system as an ontology based system. It is a system constructed to strengthen management and control of logistics situation of commanders and practitioners by providing real - time information on maintenance and distribution situation as it becomes difficult to use complicated logistics information system with large amount of data. Although it is a method to take pre-specified necessary information from the existing logistics system and display it as a web page, it is also difficult to confirm this system except for a few specified items in advance, and it is also time-consuming to extend the additional function if necessary And it is a system composed of category type without search function. Therefore, it has a disadvantage that it can be easily utilized only when the system is well known as in the existing system. The ontology-based logistics situation management system is designed to provide the intuitive visualization of the complex information of the existing logistics information system through the ontology. In order to construct the logistics situation management system through the ontology, And the useful functions such as performance - based logistics support contract management and component dictionary are further identified and included in the ontology. In order to confirm whether the constructed ontology can be used for decision support, it is necessary to implement a meaningful analysis function such as calculation of the utilization rate of the aircraft, inquiry about performance-based military contract. Especially, in contrast to building ontology database in ontology study in the past, in this study, time series data which change value according to time such as the state of aircraft by date are constructed by ontology, and through the constructed ontology, I

        • KCI등재

          기업정보 기반 지능형 밸류체인 네트워크 시스템에 관한 연구

          성태응(Tae-Eung Sung), 김강회(Kang-Hoe Kim), 문영수(Young-Su Moon), 이호신(Ho-Shin Lee) 한국지능정보시스템학회 2018 지능정보연구 Vol.24 No.3

          최근까지도 중소기업의 지속성장 및 경쟁력 확보에 대한 중요함을 인식함에 따라, 정부 차원에서의 유형 자원(R&D 인력, 자금 등)에 대한 지원이 주로 투입되어 왔다. 그러나 사업지원의 적절성이나 효과성, 효율성 면에서 서로 상충되는 정책부분이 존재하여 과소 지원이나 중복 지원 등 지원체계의 비효율성 문제가 제기되어 온 것도 사실이다. 정부나 기업 관점에서는 중소기업의 한정된 자원으로 인해, 외부와의 협력을 통한 기술개발 및 역량강화가 기업의 경쟁우위를 창출하는 근간이라 보고 있으며, 이를 위한 가치창출 활동을 강조하고 있다. 기업 레벨에서의 지식생태계 구축을 통해 일련의 가치사슬로부터 기업거래 관계를 분석하고 결과를 가시화할 수 있는 밸류체인 네트워크 분석이 필요한 것도 이 때문이다. 특허/제품/기업명 검색을 통해 관련 제품의 정보나 특허 보유 기업의 기술(제품) 현황 정보를 제공하는 기술기회발굴시스템(Technology Opportunity Discovery system), 기업(재무)정보와 신용정보을 열람하게 해주는 CRETOP이나 KISLINE 등은 존재하고 있으나 밸류체인 네트워크 분석기반으로 유사(경쟁)기업의 리스트나 향후 거래 가능한 잠재 거래처 정보를 제공해주는 시스템은 부재한 실정이다. 따라서, 본 고에서는 KISTI에서 개발 · 운영중인 기업 비즈니스 전략수립 지원 파트너인 ‘밸류체인 네트워크시스템(Value Chain Network System : VCNS)'을 중심으로, 탑재된 네트워크 기반 분석모듈의 유형, 이를 지원하는 참조정보 및 데이터베이스(D/B)의 구성 로직과 시스템 활용방안을 고찰하며, 산업구조를 이해하고 기업의 신제품 개발을 위한 핵심정보가 되고 있는 지능형 밸류체인 분석 시스템의 네트워크 가시화 기능을 살펴보기로 한다. 한 기업이 다른 기업 대비 경쟁우위를 확보하기 위해서는 보유 특허 또는 현재 생산하고 있는 제품에 대한 경쟁자 식별이 필요하며, 세부 업종별 유사(경쟁)기업을 탐색하는 일은 대상기업의 사업화 경쟁력 확보에 핵심이 된다. 또한 기업간 비즈니스 활동인 거래정보는 유사 분야로 진출할 경우 잠재 거래처 정보를 제공하는 중요한 역할을 수행한다. 이러한 기업간 판매정보를 기반으로 구축된 네트워크 맵을 활용하여 기업 또는 업종 수준의 경쟁자를 식별하는 일은 밸류체인 분석의 핵심모듈로 탑재될 수 있다. 밸류체인 네트워크 시스템(VCNS)은 단순 수집된 종래의 기업정보에 밸류체인(value chain) 및 산업구조 분석개념을 접목하여 개별 기업의 시장경쟁 상황은 물론 특정 산업의 가치사슬 관계를 파악할 수 있다. 특히 업종구조 파악, 경쟁사 동향 파악, 경쟁사 분석, 판매처 및 구매처 발굴, 품목별 산업동향, 유망 품목 발굴, 신규 진입기업 발굴, VC별 핵심기업 및 품목 도출, 해당 기업별 보유 특허 파악 등 기업 레벨에서의 유용한 정보분석 툴로 활용 가능하다. 또한, 거래처 정보 및 재무데이터로부터 분석된 결과의 객관성 및 신뢰성을 기반으로, 현재 국내에서 이용 중인 15,000여개 회원기업과 연구개발서비스업 종사자, 출연(연) 및 공공기관 등에서 사업평가정보지원, R&D 의사결정 지원 및 중 · 단기 수요예측 전망 등 다양한 목적(용도)에 밸류체인 네트워크 시스템을 활용할 수 있을 것으로 기대된다. 기업의 사업경쟁력 강화를 위해 정부기관 및 민간 연구개발서비스 기업을 중심으로 기술(특허) 및 시장정보가 제공되어 왔으며, 이는 특허분석(등급, 계량분석 위주) 또는 시장분석(시장보고서 기반 시장규모 및 수요예측 위주)의 형태로 지원되어 왔다. 그러나 기업이 사업화진출 단계에서 겪게 되는 애로요인의 하나인 정보부족을 해결하는데 한계가 있었으며, 특히 경쟁기업 및 거래가능 기업 후보군에 대한 탐색정보는 입수하기 어려웠다. 본 연구를 통해 제안된 네트워크맵 및 보유 데이터 기반의 실시간 밸류체인 가시화 서비스모듈이 중견 · 중소기업이 당면한 신규시장 진출시 경쟁기업 대비 예상점유율, (예상)매출액 수준, 어느 기업을 컨택하여 유통망(원자재/부품에 대한 공급처, 완제품/모듈에 대한 수요처)을 확보할 지에 대한 핵심정보를 제공할 수 있을 것으로 기대된다. 향후 연구에서는 대체기업(또는 대체품목) 경쟁지표의 개발과 연구주체의 참여를 통한 경쟁요인별 지표의 고도화 연구, VCNS의 성능향상을 위한 데이터마이닝 기술 및 알고리즘을 추가 반영하도록 수행하고자 한다.

        • KCI등재

          유비쿼터스 환경에서 복합 상품 구성을 위한 지능형 여행 정보 시스템에 대한 연구–의미론적 웹 서비스 중심

          이현정,손미애 한국지능정보시스템학회 2006 지능정보연구 Vol.12 No.2

          In this research, we are suggesting intelligent information system for traveling which is focusing on product bundling and integration of information from various resources on ubiquitous computing environment. It is necessary for products structure to easily integrate according to customers' requirements because traveling product is integrated by various traveling resources like airline, hotel reservation, and so on. To guarantee of traveler's mobility in ubiquitous computing environment, we need product bundling and modification process to configure products and semantic web service which supports ontology based traveling information system to support immediate integrating of traveling information from various resources. In this research, we offer a product bundling and integration of information. It is based on the semantic web service, with several components (single products) to reconfigure a bundle of traveling products. 본 논문에서는 유비쿼터스 환경에서 유동 소비자에 대한 서비스 이용의 유동성을 보장할 수 있는 지능형 여행정보서비스를 제안하고자 한다. 본 시스템은 유비쿼터스 환경에서 여행자가 필요로 하는 다양한 정보 획득을 돕기 위해 단일상품 묶음을 통한 복합상품 구성과 시맨틱 웹 서비스에 기반한 정보의 구조적 표현을 목적으로 설계되었다. 여행정보시스템에 연관된 상품들은 호텔, 항공사, 자동차대여, 여행지 정보, 음식점 및 Business Trip 등으로 여행자의 요구 및 상황의 변화에 맞게 연관상품의 복합상품구성을 위한 지능형 여행 최적 정보시스템의 연구가 요구된다. 이를 위해 본 연구에서는 여행서비스 지원을 위해, 첫째 여행자의 요구에 따른 단일상품의 복합상품화를 위한 방법론(Product bundling and modification)을 제안하였다. 둘째, 복합상품을 구성하기 위해 개별 정보시스템에 이질적인 형태로 저장되어있는 단일상품에 대한 정보를 공유하기 위해 시맨틱 웹 기반 정보의 구조적 표현에 관하여 제안한다. 이에 본 논문에서는 OWL 기반의 온톨로지를 구축하였다. 따라서 온톨로지 기반의 여행정보시스템은 향후 시맨틱 웹서비스 기반의 지능형 여행정보시스템 구축을 위한 초석으로 활용될 것이다.

        • KCI등재

          웹기반 지능형 기술가치평가 시스템에 관한 연구

          성태응(Tae-Eung Sung), 전승표(Seung-Pyo Jun), 김상국(Sang-Gook Kim), 박현우(Hyun-Woo Park) 한국지능정보시스템학회 2017 지능정보연구 Vol.23 No.1

          2000년대 이전부터 북미・유럽의 선진국을 중심으로 특정 기업이나 사업(프로젝트)에 관한 가치를 평가하는 사례는 있어 왔으나, 개별 기술(특허)의 경제적 가치를 산정하는 체계나 방법론은 국내를 중심으로 최근 들어 활성화되어 왔다. 이러한 기술가치평가 분야는 기술이전(거래), 현물출자, 사업타당성 분석, 투자유치, 세무/소송 등의 다양한 용도로 활용되고 있다. 물론 기술보증기금의 KTRS, 발명진흥회의 SMART 3.1과 같이, 평가대상기술에 대한 기술력(등급) 평가 혹은 특허등급평가를 정성적으로 수행하는 온라인 시스템은 존재해 왔으나, 대상기술의 정량적인 가치금액까지 산출해 주는 웹기반 지능형 기술가치평가 시스템은 한국과학기술정보연구원(KISTI)에 의해 유일하게 개발 및 공식 오픈되어 확산・활용되고 있다. 본 고에서는 KISTI에서 개발・운영중인 웹기반 ‘STAR-Value' 시스템을 중심으로, 탑재된 방법론 및 평가모델의 유형, 이를 지원하는 참조정보 및 데이터베이스(D/B)가 어떻게 연계・활용되는지를 소개한다. 특히 미래에 발생할 경제적 수익을 추정하여 현재가치화하는 소득접근법 기반의 대표 모델인 현금흐름할인(DCF) 모델과 특정 로열티율을 기반으로 로열티수입료의 현재가치를 기술료 대가로 산정하는 로열티절감모델을 포함한 6개 모델, 그리고 관련 지원정보(기술수명, 기업(업종)재무정보, 할인율, 산업기술요소 등)의 데이터 기반 연계 방식에 대해 살펴본다. STAR-Value 시스템은 평가대상기술에 대한 국제특허분류(IPC) 혹은 한국표준산업분류(KSIC) 등의 분류 정보로부터 기술순환주기(TCT) 지수, 유사업종(혹은 유사기업)의 매출액 성장률 및 수익성 데이터, 업종별 가중평균자본비용(WACC) 및 산업기술요소 지수 등 메타데이터값을 자동적으로 불러오고 여기에 조정요인을 반영하여 기술가치의 산출결과가 높은 신뢰성 및 객관성을 가지도록 한다. 나아가 대상기술의 잠재적 시장규모와 해당 사업화주체의 시장점유율에 대한 정보까지 보유 재무데이터 기반으로 참조값을 제시하거나 기존에 완료된 평가사례 축적 기반으로 업종별 유사 기술의 가치범위값을 제시해 준다면, 본 시스템이 보다 지능형으로 지원모듈을 연계 활용하고 실시간으로 손쉽게 고(高)정확도의 기술가치범위를 제시해 줄 수 있을 것으로 기대된다. 본 고에서는 웹기반 STAR-Value 시스템이 참조데이터 기반으로 지능형 연계를 수행하도록 해주는 모형선택 가이드라인 지원기능, 기술가치범위 추론 지원기능, 유사기업 선정 기반의 시장점유율 산정 지원기능의 내부로직 구성을 설명한다. 상기 지원기능을 통해 비전문가(또는 초보자) 수준에서 최적의 평가모형 선택, 기술가치 범위 추론, 유사기업 선택 및 시장점유율 산정에 대한 정보지원이 데이터 사이언스 및 기계학습 기반으로 수행 될 수 있다. 본 연구는 기술가치평가 분야의 이론적 타당성을 평가실무에서 활용할 수 있는 평가모델 및 지원정보를 실제 탑재한 웹기반 시스템의 소개에 의미가 있으며, 추가적으로 보다 객관적이고 손쉬운 지능형 지원시스템의 활용성을 높임으로써, 앞으로 기술사업화의 제 분야에서 다양하게 활용할 수 있을 것으로 기대된다. Although there have been cases of evaluating the value of specific companies or projects which have centralized on developed countries in North America and Europe from the early 2000s, the system and methodology for estimating the economic value of individual technologies or patents has been activated on and on. Of course, there exist several online systems that qualitatively evaluate the technology's grade or the patent rating of the technology to be evaluated, as in ‘KTRS' of the KIBO and ‘SMART 3.1' of the Korea Invention Promotion Association. However, a web-based technology valuation system, referred to as ‘STAR-Value system' that calculates the quantitative values of the subject technology for various purposes such as business feasibility analysis, investment attraction, tax/litigation, etc., has been officially opened and recently spreading. In this study, we introduce the type of methodology and evaluation model, reference information supporting these theories, and how database associated are utilized, focusing various modules and frameworks embedded in STAR-Value system. In particular, there are six valuation methods, including the discounted cash flow method (DCF), which is a representative one based on the income approach that anticipates future economic income to be valued at present, and the relief-from-royalty method, which calculates the present value of royalties" where we consider the contribution of the subject technology towards the business value created as the royalty rate. We look at how models and related support information (technology life, corporate (business) financial information, discount rate, industrial technology factors, etc.) can be used and linked in a intelligent manner. Based on the classification of information such as International Patent Classification (IPC) or Korea Standard Industry Classification (KSIC) for technology to be evaluated, the STAR-Value system automatically returns meta data such as technology cycle time (TCT), sales growth rate and profitability data of similar company or industry sector, weighted average cost of capital (WACC), indices of industrial technology factors, etc., and apply adjustment factors to them, so that the result of technology value calculation has high reliability and objectivity. Furthermore, if the information on the potential market size of the target technology and the market share of the commercialization subject refers to data-driven information, or if the estimated value range of similar technologies by industry sector is provided from the evaluation cases which are already completed and accumulated in database, the STAR-Value is anticipated that it will enable to present highly accurate value range in real time by intelligently linking various support modules. Including the explanation of the various valuation models and relevant primary variables as presented in this paper, the STAR-Value system intends to utilize more systematically and in a data-driven way by supporting the optimal model selection guideline module, intelligent technology value range reasoning module, and similar company selection based market share prediction module, etc. In addition, the research on the development and intelligence of the web-based STAR-Value system is significant in that it widely spread the web-based system that can be used in the validation and application to practices of the theoretical feasibility of the technology valuation field, and it is expected that it could be utilized in various fields of technology commercialization.

        • KCI등재

          사용자의 잠재적 흥미를 인식하기 위한 주시 모방 모델 기반의 지능형 정보 시스템

          박혜선(Hye-Sun Park), 히라야마 다카쯔쿠(Takatsugu Hirayama), 마쯔야마 다카시(Takashi Matsuyama) 한국지능정보시스템학회 2010 지능정보연구 Vol.16 No.3

          정보의 수집, 기록, 처리, 저장을 하며 정보를 검색하고 제시해 주는 정보 시스템은 최근, 여러 방면에서 응용되어 인간의 여러 가지 활동을 지원하고 있다. 그런데, 현재의 정보 시스템은 일반적으로, 사용자의 명시적 제시에 대하여 시스템이 반응하고 정보를 제시하는 ‘반작용에 의한 소극적 모델(reactive model)'을 기반으로 하고 있다. 그러나 정보사회로 발전하기 위해서는 정보 시스템 자신이 자율적으로 인간의 행동이나 의도를 이해해, 거기에 기반을 두고 인간에게 지시나 정보 제공을 자발적으로 실시한다고 하는 ‘쌍방향의 동적 상호작용(mutual dynamic interaction)'이 필요하다. 따라서 본 논문에서는 정보시스템과 사용자의 ‘시선' 정보 기반의 쌍방향의 동적 상호작용을 통하여, 사용자의 ‘흥미' 라고 하는 심리적 상태를 추정하여, 보다 적절하고 효과적인 정보를 제공할 수 있는 주시 모방 모델 기반의 지능형 정보 시스템을 제안한다. 제안된 시스템은 의인 에이전트(avatar)를 이용하여 사용자의 주시 행동을 모방하는 것에 의해, 사용자와의 ‘공동 주의'를 실시하는 주시 모방(Gaze-Mirroring)이라는 방법을 도입하여, 시스템이 사용자의 잠재적인 흥미를 추정하고 추정된 결과에 따라 적절한 정보를 제시한다. 이와 같은 사용자의 시선정보를 이용한 주시 모방 모델 기반의 지능형 정보 시스템은 시스템의 적극적인 상호작용을 통한 새로운 상호작용 방법의 개발이 될 뿐만 아니라, 사용자의 주시 정보를 통하여, 사용자의 잠재적 흥미를 표출함으로써, 사용자의 의도를 이해해, 사용자가 원하는 정보를 제시해 줄 수 있다. The information system that preserves and presents information collections, records, processes, retrievals, is applied in various fields recently and is supporting man's many activities. Conventional information systems are based on the reactive interaction model. Such reactive systems respond to only specific instructions, i.e. the defined commands, from the user. To go beyond the reactive interaction, it is necessary that the interactive dynamic interaction based information system which understands human's action and intention autonomously and then provides sensible information adapted to the user. Therefore, we propose a Gaze Mirroring-based intelligent information system for making user's latent interest using the internal state estimation methods based on the interactive dynamic interaction. Then, the proposed Gaze Mirroring method is that an anthropomorphic agent(avatar) actively established the joint attention with the user by imitating user's eye-gaze behavior. We verify that the Gaze Mirroring can elicit the user's behavior reflecting the latent interestand contribute to improving the accuracy of interest estimation. We also have confidence that the Gaze Mirroring promotes the self-awareness of interest. Such a Gaze Mirroring-based intelligent information system also provides suitable information to user by making user's latent interest using the internal state estimation.

        • KCI등재

          협력필터링과 사회연결망을 이용한 신규고객 추천방법에 대한 연구

          신창훈(Chang-Hoon Shin), 이지원(Ji-Won Lee), 양한나(Han-Na Yang), 최일영(Il Young Choi) 한국지능정보시스템학회 2012 지능정보연구 Vol.18 No.4

          고객이 상품을 구매하는 패턴이 빠르게 변화하고 있다. 오프라인에서 고객이 직접 상품을 보고, 체험한 후 구매하던 패턴이 TV홈쇼핑, 인터넷 쇼핑 등 고객이 편리한 장소에서 자유롭게 구매하는 방법으로 확산되었다. 이처럼 구매 가능한 상품의 범위는 점점 더 다양해지고 있지만 이로 인하여 고객이 상품을 구매할 때 생기는 번거로움은 더욱 커지고 있다. 오프라인에서는 물건을 직접보고 구매하기 때문에 반품율이 낮은 반면에 온라인 구매 물품은 배송과 환불 등에서 복잡한 일들이 많이 발생한다. 온라인을 통해서 물건을 구매할 때 상품에 대한 사전 정보는 매우 한정적이며 실제로 물건을 구매했을 경우 고객이 생각했던 것과 다를 수 있다. 이러한 결과는 결국 고객의 불만족 및 구매취소로 이어진다. 또한 TV홈쇼핑이나 인터넷쇼핑 등을 통해서 물건을 구매할 때 고객들은 이미 상품을 구매한 고객의 리뷰에도 관심을 기울이고 있다. 좋은 평가를 받은 상품은 더 많은 매출로 이어질 수 있기 때문에 기업은 이에 관심을 기울일 필요가 있다. 고객의 욕구를 만족시킬 수 있는 적절한 상품을 추천해 주고 이를 구매로 연결시키는 것은 기업의 이윤 창출과 직결되기 때문에 그 중요성이 강조된다. 고객을 위한 추천방법은 베스트셀러기반 추천방법, 인구통계 정보기반 추천방법, 최소질의대상 상품결정방법, 내용필터링기법, 협력필터링기법 등이 존재하며, 이에 대한 많은 연구가 활발하게 진행되고 있다. 그러나 위의 방법들을 신규고객에게 적용하는 것에는 문제가 발생할 수 있다. 신규고객은 상품에 대한 과거 구매이력이 존재하지 않기 때문이다. 이를 해결하기 위한 방안으로 가입 시, 고객의 인구통계적 정보나 선호도에 대한 응답을 유도하는 방법을 활용할 수 있다. 그러나 고객이 이에 대한 번거로움을 느낄 수도 있으며, 불완전한 답변을 하게 되면 추천의 정확도는 감소한다. 최근 이미 상품을 구매한 고객의 리뷰 및 기업에서 추천하는 제품에 의존하는 고객들이 증가하면서 이를 악용하는 사례도 자주 등장한다. 결국 추천에 대한 고객들의 신뢰는 감소하게 될 것이다. 따라서 좀 더 명확한 방식의 추천시스템이 절실하며, 이것이 개선된다면 는 곧 고객들의 신뢰 증가로 이어질 것이다. 본 연구에서는 협력필터링기법과 사회연결망기법의 중심성을 결합한 분석을 시도하였다. 중심성은 신규고객의 선호도를 기존고객들의 데이터를 통하여 유추하기 위하여 활용되는 정보이다. 기존 연구들에서는 기존고객들의 구매 가운데 구매성향이 유사한 고객들의 정보에 초점을 맞추고 있으며 구매성향이 다른 고객들의 정보에 대한 분석은 이루어지고 있지 않다. 그러나 이처럼 구매성향이 서로 다른 고객들의 정보를 활용한다면 추천의 정확성이 더 향상되지 않을까 하는 점을 기반으로 데이터들을 다양한 방식으로 분석하였다. 연구에 사용된 데이터는 미네소타대학의 GroupLens Research Project팀이 협력필터링기법을 통하여 영화를 추천하기 위해 만든 MovieLens의 데이터이다. 이는 1,684편의 영화에 대한 선호도를 943명이 응답한 정보로 총 100,000개의 데이터가 있다. 이를 시간 순으로 구분하여 초기 50,000개의 데이터를 기존고객의 데이터로, 후기 50,000개의 데이터를 신규고객의 데이터로 사용하였다. 이 때, 신규고객과 기존고객은 연구자가 임의로 구분한 것이다. 따라서 신규고객이라고 표현되는 고객의 데이터는 실제로 추천시스템을 통해 정보를 제공받은 고객이라고는 볼 수 없다. 그러나 현실적으로 실제 신규고객의 데이터를 수집하는 것이 쉽지 않기 때문에 전체 고객의 정보를 시간 순으로 구분하고 신규고객으로 분류한 것임을 밝혀둔다. 제시된 추천시스템은 [+]집단 추천시스템, [-]집단 추천시스템, 통합 추천시스템으로 총 3가지이다. [+]집단 추천시스템은 기존의 연구들과 유사한 방식으로 유사도가 높은 고객들을 신규고객의 이웃고객으로 분석하였다. 유사도가 높다는 것은 다른 고객들과 상품 구매에 대한 성향이 유사한 것을 의미한다. 또한 [-]집단 추천시스템은 유사도가 낮고 다른 고객들과 상품의 구매패턴이 반대에 가까운 고객들의 데이터를 활용하였으며, 통합 추천시스템은 [+]집단 추천시스템과 [-]집단 추천시스템을 결합한 방식이다. [+]집단 추천시스템과 [-]집단 추천시스템에서 각각 추천된 영화 가운데 중복되는 영화만을 신규고객에게 추천하는 방식이다. 다양한 방법의 시도를 통하여 적절한 추천시스템을 찾고, 추천시스템의 정확도를 향상시키는데 그 목적이 있다. 활용된 데이터의 분석 결과는 통합 추천시스템이 정확도가 가장 높았으며 [-]집단 추천시스템, [+]집단 추천시스템의 순인 것으로 나타났다. 이는 통합 추천시스템이 가장 효율적일 것이라는 연구자의 추측과 일치하는 결과이다. 각각의 추천시스템은 정확도의 변화를 쉽게 비교할 수 있도록 등고선지도 및 그래프를 이용하여 나타냈다. 연구의 한계점으로는 연구자가 제시한 통합 추천시스템과 [-]집단 추천시스템에 대한 정확도는 향상되었지만 이는 임의로 구분한 기준을 바탕으로 분석하였다는 점이다. 실제 추천된 영화를 바탕으로 신규고객이 영화를 선택 한 것이 아니라 기존고객의 데이터를 임의로 분류하였기 때문이다. 따라서 이는 추천 영화가 실제 고객에 미친 영향이 아니라는 한계가 존재한다. 또한 영화가 아닌 다른 상품에 대해서 이 추천시스템을 적용하였을 경우 추천 정확도에는 차이가 있을 수 있다. 따라서 추천시스템을 적용할 때에는 각 상품 및 고객집단의 특성에 적합한 적용이 필요하다. Consumer consumption patterns are shifting rapidly as buyers migrate from offline markets to e-commerce routes, such as shopping channels on TV and internet shopping malls. In the offline markets consumers go shopping, see the shopping items, and choose from them. Recently consumers tend towards buying at shopping sites free from time and place. However, as e-commerce markets continue to expand, customers are complaining that it is becoming a bigger hassle to shop online. In the online shopping, shoppers have very limited information on the products. The delivered products can be different from what they have wanted. This case results to purchase cancellation. Because these things happen frequently, they are likely to refer to the consumer reviews and companies should be concerned about consumer's voice. E-commerce is a very important marketing tool for suppliers. It can recommend products to customers and connect them directly with suppliers with just a click of a button. The recommender system is being studied in various ways. Some of the more prominent ones include recommendation based on best-seller and demographics, contents filtering, and collaborative filtering. However, these systems all share two weaknesses : they cannot recommend products to consumers on a personal level, and they cannot recommend products to new consumers with no buying history. To fix these problems, we can use the information which has been collected from the questionnaires about their demographics and preference ratings. But, consumers feel these questionnaires are a burden and are unlikely to provide correct information. This study investigates combining collaborative filtering with the centrality of social network analysis. This centrality measure provides the information to infer the preference of new consumers from the shopping history of existing and previous ones. While the past researches had focused on the existing consumers with similar shopping patterns, this study tried to improve the accuracy of recommendation with all shopping information, which included not only similar shopping patterns but also dissimilar ones. Data used in this study, Movie Lens' data, was made by Group Lens research Project Team at University of Minnesota to recommend movies with a collaborative filtering technique. This data was built from the questionnaires of 943 respondents which gave the information on the preference ratings on 1,684 movies. Total data of 100,000 was organized by time, with initial data of 50,000 being existing customers and the latter 50,000 being new customers. The proposed recommender system consists of three systems : [+] group recommender system, [-] group recommender system, and integrated recommender system. [+] group recommender system looks at customers with similar buying patterns as ‘neighbors', whereas [-] group recommender system looks at customers with opposite buying patterns as ‘contraries'. Integrated recommender system uses both of the aforementioned recommender systems to recommend movies that both recommender systems pick. The study of three systems allows us to find the most suitable recommender system that will optimize accuracy and customer satisfaction. Our analysis showed that integrated recommender system is the best solution among the three systems studied, followed by [-] group recommended system and [+] group recommender system. This result conforms to the intuition that the accuracy of recommendation can be improved using all the relevant information. We provided contour maps and graphs to easily compare the accuracy of each recommender system. Although we saw improvement on accuracy with the integrated recommender system, we must remember that this research is based on static data with no live customers. In other words, consumers did not see the movies actually recommended from the system. Also, this recommendation system may not work well with products other than movies. Thu

        • KCI등재

          A Study on Developing a VKOSPI Forecasting Model via GARCH Class Models for Intelligent Volatility Trading Systems

          Sun Woong Kim(김선웅) 한국지능정보시스템학회 2010 지능정보연구 Vol.16 No.2

          학계와 금융파생상품 가격결정이나 변동성매매와 같은 실무영역 모두에서 주식시장의 변동성은 중요한 역할을 한다. 본 연구는 GARCH 모형에 기초하여 한국주식시장의 변동성을 정확히 예측함으로써 변동성매매시스템의 성과를 높일 수 있는 새로운 방법을 제시하였다. 특히, 여러 연구 자료에서 밝혀지고 있는 변동성 비대칭성개념을 도입하였다. 최근 새로 개발된 한국주식시장 변동성 지수인 VKOSPI를 변동성 대용값으로 사용한다. VKOSPI는 KOSPI 200 지수옵션의 가격을 이용하여 계산된 값으로서 옵션딜러들의 변동성 예측치를 반영하고 있다. KOSPI 200 옵션시장은 1997년 시작되었으며, 발전을 거듭하여 현재 하루 거래량이 1,000만 계약을 넘어서면서 세계 최고의 지수옵션시장으로 발전하였다. 이러한 옵션시장에 반영된 변동성을 분석하는 것은 투자자들에게 좋은 투자정보를 제공하게 될 것이다. 특히, 변동성 대용값으로 VKOSPI를 사용하면 다른 변동성 대용치를 사용할 때 발생하는 통계적 추정의 문제를 피해 갈 수 있다. 본 연구는 2003년부터 2006년의 KOSPI 200 지수 일별자료를 대상으로 최우도추정방법(MLE)을 이용하여 GARCH 모형을 추정한다. 비대칭 GARCH 모형으로는 Glosten, Jagannathan, Runke의 GJR-GARCH 모형, Nelson의 EGARCH 모형, 그리고 Ding, Granger, Engle의 PARCH모형을 포함하며 대칭 GARCH 모형은 (1, 1) GARCH 모형을 이용한다. 2007년부터 2009년까지의 KOSPI 200지수 일별자료를 대상으로 반복적 계산과정을 통해 내일의 변동성 예측값과 오르고 내리는 변화방향을 예측하였다. 분석 결과 시장변동성과 예기치 않은 주가변동 사이에는 음의 상관관계가 존재하며, 음의 주가변동은 동일한 크기의 양의 주가변동보다 훨씬 더 큰 변동성의 증가를 가져옴을 알 수 있다. 즉, 한국 주식시장에도 변동성 비대칭성이 존재함을 보여주었다. GARCH 모형을 이용하여 내일의 VKOSPI의 등락방향을 예측하고 이를 이용하여 변동성 매매시스템을 개발하였다. 내일의 변동성이 상승할 것으로 예측되면 스트래들매수전략을 이용하고 반대로 변동성이 하락할 것으로 예측되면 스트래들 매도전략을 이용한다. 변동성의 변화방향성을 맞춘 경우에는 VKOSPI 변동분을 더하고 틀린 경우에는 변동분을 뺀 누적합을 이용하여 변동성매매전략의 총수익을 계산한다. 모형추정용 자료구간의 경우 통계적 기준인 MSPE 기준으로는 PARCH 모형의 적합도가 가장 높고, 예측방향의 적중도를 재는 MCP 기준으로는 EGARCH 모형이 가장 높은 값을 보여주었다. 테스트용 자료구간의 경우에는 PARCH 모형이 모형적합도와 내일의 변동성 등락방향 예측에서 가장 좋은 결과를 보여주었다. 모형추정용 자료구간의 경우 GARCH 모형 전체에서 매매이익을 기록하고 있고 테스트용 자료구간의 경우에는 EGARCH 모형을 제외한 GARCH 모형들이 매매이익을 보여주었다. 본 연구에서 나타난 변동성의 군집과 비대칭성 현상으로부터 변동성에 비선형성이 존재함을 알수 있었으며, 비선형성에서 좋은 결과를 보이고 있는 인공지능시스템과 비대칭 GARCH 모형을 결합한다면 제안된 변동성매매시스템의 성과를 많이 개선할 수 있을 것으로 판단된다. Volatility plays a central role in both academic and practical applications, especially in pricing financial derivative products and trading volatility strategies. This study presents a novel mechanism based on generalized autoregressive conditional heteroskedasticity (GARCH) models that is able to enhance the performance of intelligent volatility trading systems by predicting Korean stock market volatility more accurately. In particular, we embedded the concept of the volatility asymmetry documented widely in the literature into our model. The newly developed Korean stock market volatility index of KOSPI 200, VKOSPI, is used as a volatility proxy. It is the price of a linear portfolio of the KOSPI 200 index options and measures the effect of the expectations of dealers and option traders on stock market volatility for 30 calendar days. The KOSPI 200 index options market started in 1997 and has become the most actively traded market in the world. Its trading volume is more than 10 million contracts a day and records the highest of all the stock index option markets. Therefore, analyzing the VKOSPI has great importance in understanding volatility inherent in option prices and can afford some trading ideas for futures and option dealers. Use of the VKOSPI as volatility proxy avoids statistical estimation problems associated with other measures of volatility since the VKOSPI is model-free expected volatility of market participants calculated directly from the transacted option prices. This study estimates the symmetric and asymmetric GARCH models for the KOSPI 200 index from January 2003 to December 2006 by the maximum likelihood procedure. Asymmetric GARCH models include GJR-GARCH model of Glosten, Jagannathan and Runke, exponential GARCH model of Nelson and power autoregressive conditional heteroskedasticity (ARCH) of Ding, Granger and Engle. Symmetric GARCH model indicates basic GARCH (1, 1). Tomorrow's forecasted value and change direction of stock market volatility are obtained by recursive GARCH specifications from January 2007 to December 2009 and are compared with the VKOSPI. Empirical results indicate that negative unanticipated returns increase volatility more than positive return shocks of equal magnitude decrease volatility, indicating the existence of volatility asymmetry in the Korean stock market. The point value and change direction of tomorrow VKOSPI are estimated and forecasted by GARCH models. Volatility trading system is developed using the forecasted change direction of the VKOSPI, that is, if tomorrow VKOSPI is expected to rise, a long straddle or strangle position is established. A short straddle or strangle position is taken if VKOSPI is expected to fall tomorrow. Total profit is calculated as the cumulative sum of the VKOSPI percentage change. If forecasted direction is correct, the absolute value of the VKOSPI percentage changes is added to trading profit. It is subtracted from the trading profit if forecasted direction is not correct. For the in-sample period, the power ARCH model best fits in a statistical metric, Mean Squared Prediction Error (MSPE), and the exponential GARCH model shows the highest Mean Correct Prediction (MCP). The power ARCH model best fits also for the out-of-sample period and provides the highest probability for the VKOSPI change direction tomorrow. Generally, the power ARCH model shows the best fit for the VKOSPI. All the GARCH models provide trading profits for volatility trading system and the exponential GARCH model shows the best performance, annual profit of 197.56%, during the in-sample period. The GARCH models present trading profits during the out-of-sample period except for the exponential GARCH model. During the out-of-sample period, the power ARCH model shows the largest annual trading profit of 38%. The volatility clustering and asymmetry found in this research are the reflection of volatility non-linearity. This further suggests that combining the a

        맨 위로 스크롤 이동