RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Rapid Identification and Characterization of Antioxidants from Ligularia fischeri

        Xiang-Lan Piao,Xiao-Yuan Mi,Yan-Ze Tian,Qian Wu,Hui-Shan Piao,Zhikai Zeng,Xiangshu Piao,Ding Wang 대한약학회 2009 Archives of Pharmacal Research Vol.32 No.12

        The objectives of this study were to investigate the radical-scavenging activity of Ligularia fischeri on oxidative damage by the radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) and to rapidly identify the active components using the bioassay-linked fractionation method. The MeOH extract and fractions of CH2Cl2, BuOH, and H2O from L. fischeri showed DPPH radical-scavenging effects in a dose-dependent manner (p < 0.01). In particular, the BuOH fraction had the most effective (p < 0.05) antioxidative capacity. The active constituents from the BuOH fraction of L. fischeri were rapidly isolated by bioassay-linked HPLC method and identified as hyperoside and 2''-acetylhyperoside with potent antioxidant effects against the DPPH radical, with IC50 values of 1.31 and 7.09 μg/mL, respectively. They have not been reported from L. fischeri yet.

      • KCI등재

        Transcription Profiling of a Revealed the Potential Molecular Mechanism of Governor Vessel Electroacupuncture for Spinal Cord Injury in Rats

        Xingru Xiao,Qingwen Deng,Xiang Zeng,Bi-Qin Lai,Yuan-Huan Ma,Ge Li,Yuan-Shan Zeng,Ying Ding 대한척추신경외과학회 2022 Neurospine Vol.19 No.3

        Objective: This study aimed to identify differentially expressed genes (DEGs) by transcriptome analysis to elucidate a potential mechanism by which governor vessel electroacupuncture (GV-EA) promotes neuronal survival, axonal regeneration, and functional recovery after complete transection spinal cord injury (SCI). Methods: Sham, control, or GV-EA group adult female Sprague Dawley rats underwent a complete transection SCI protocol. SCI area RNA-seq investigated the DEGs of coding and noncoding RNAs 7 days post-SCI. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were used to classify DEGs functions, to explain a possible molecular mechanism. Immunofluorescence and BBB (Basso, Beattie, and Bresnahan) score were used to verify a GV-EA treatment effect following SCI. Results: GV-EA treatment could regulate the expression of 173 mRNA, 260 lncRNA, and 153 circRNA genes among these DEGs resulted by SCI. GO enrichment analysis showed that the DEGs were most enriched in membrane, actin binding, and regulation of Toll-like receptor signaling pathway. KEGG pathway analysis showed enriched pathways (e.g. , Tolllike receptors, MAPK, Hippo signaling). According to the ceRNA network, miR-144-3p played a regulatory role by interacting with lncRNA and circRNA. GV-EA also promoted the injured spinal cord neuron survival, axonal regeneration, and functional improvement of hind limb locomotion. Conclusion: Results of our RNA-seq suggest that post-SCI GV-EA may regulate characteristic changes in transcriptome gene expression, potential critical genes, and signaling pathways, providing clear directions for further investigation into the mechanism of GV-EA in subacute SCI treatment. Moreover, we found that GV-EA promotes neuronal survival, nerve fiber extension, and motor function recovery in subacute SCI.

      • KCI등재

        The Prognostic Value of Treatment-Related Lymphopenia in Nasopharyngeal Carcinoma Patients

        Li-Ting Liu,Qiu-Yan Chen,Lin-Quan Tang,Shan-Shan Guo,Ling Guo,Hao-Yuan Mo,Ming-Yuan Chen,Chong Zhao,Xiang Guo,Chao-Nan Qian,Mu-Sheng Zeng,Jin-Xin Bei,Jing Tan,Shuai Chen,Ming-Huang Hong,Jian-Yong Shao 대한암학회 2018 Cancer Research and Treatment Vol.50 No.1

        Purpose This study was conducted to evaluate the prognostic value of treatment-related lymphopenia in patients with nasopharyngeal carcinoma (NPC). Materials and Methods A total of 413 consecutive stage II-IVb NPC patients treated with concurrent chemoradiotherapy (CCRT) were enrolled. The overall survival (OS), progression-free survival (PFS), and distant metastasis-free survival (DMFS) were calculated with the Kaplan-Meier method, and differences were compared using the log-rank test. Results A minimum (mini)–absolute lymphocyte counts (ALC) of < 390 cells/μL or ALC after 3 months of CCRT (post3m-ALC) < 705 cells/μL was significantly associated with worse outcome than mini-ALC ! 390 cells/μL (OS, p=0.002; PFS, p=0.005; DMFS, p=0.004) or post3m-ALC ! 705 cells/μL (OS, p < 0.001; PFS, p < 0.001; DMFS, p=0.001). Patients with lymphopenia (mini-ALC < 390 cells/μL and post3m-ALC < 705 cells/μL) had a worse prognosis than those without lymphopenia (mini-ALC ! 390 cells/μL and post3m-ALC ! 705 cells/μL) (OS, p < 0.001; PFS, p < 0.001; DMFS, p < 0.001). Multivariate analysis revealed that post3m-ALC was an independent prognostic factor for OS (hazard ratio [HR], 1.76; 95% confidence interval [CI], 1.12 to 2.78; p=0.015), PFS (HR, 1.86; 95% CI, 1.23 to 2.82; p=0.003), and DMFS (HR, 1.87; 95% CI, 1.13 to 3.08; p=0.014). Multivariate analysis also revealed that patients with lymphopenia had a high risk of death (HR, 3.79; 95% CI, 1.75 to 8.19; p=0.001), disease progression (HR, 2.93; 95% CI, 1.59 to 5.41; p=0.001), and distant metastasis (HR, 3.89; 95% CI, 1.67 to 9.10; p=0.002). Multivariate analysis performed with time dependent Cox regression demonstrated ALC was an independent prognostic factor for OS (HR, 0.995; 95% CI, 0.991 to 0.999; p=0.025) and PFS (HR, 0.993; 95% CI, 0.988 to 0.998; p=0.006). Conclusion Treatment-related lymphopenia was a poor prognostic factor in NPC patients.

      • KCI등재

        Mesenchymal Stem Cells Combined With Electroacupuncture Treatment Regulate the Subpopulation of Macrophages and Astrocytes to Facilitate Axonal Regeneration in Transected Spinal Cord

        Rongyi Zhang,Junhua Wang,Qingwen Deng,Xingru Xiao,Xiang Zeng,Biqin Lai,Ge Li,Yuanhuan Ma,Jingwen Ruan,한인보,Yuan-Shan Zeng,Ying Ding 대한척추신경외과학회 2023 Neurospine Vol.20 No.4

        Objective: Herein, we investigated whether mesenchymal stem cells (MSCs) transplantation combined with electroacupuncture (EA) treatment could decrease the proportion of proinflammatory microglia/macrophages and neurotoxic A1 reactive astrocytes and inhibit glial scar formation to enhance axonal regeneration after spinal cord injury (SCI). Methods: Adult rats were divided into 5 groups after complete transection of the spinal cord at the T10 level: a control group, a nonacupoint EA (NA-EA) group, an EA group, an MSC group, and an MSCs+EA group. Immunofluorescence labeling, quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blots were performed. Results: The results showed that MSCs+EA treatment reduced the proportion of proinflammatory M1 subtype microglia/macrophages, but increased the differentiation of anti-inflammatory M2 phenotype cells, thereby suppressing the mRNA and protein expression of proinflammatory cytokines (tumor necrosis factor-α and IL-1β) and increasing the expression of an anti-inflammatory cytokine (interleukin [IL]-10) on days 7 and 14 after SCI. The changes in expression correlated with the attenuated neurotoxic A1 reactive astrocytes and glial scar, which in turn facilitated the axonal regeneration of the injured spinal cord. In vitro, the proinflammatory cytokines increased the level of proliferation of astrocytes and increased the expression levels of C3, glial fibrillary acidic protein, and chondroitin sulfate proteoglycan. These effects were blocked by administering inhibitors of ErbB1 and signal transducer and activator of transcription 3 (STAT3) (AG1478 and AG490) and IL-10. Conclusion: These findings showed that MSCs+EA treatment synergistically regulated the microglia/macrophage subpopulation to reduce inflammation, the formation of neurotoxic A1 astrocytes, and glial scars. This was achieved by downregulating the ErbB1-STAT3 signal pathway, thereby providing a favorable microenvironment conducive to axonal regeneration after SCI.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼