RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Architecture and Control Algorithms for Combating Partial Shading in Photovoltaic Systems

        Yanzhi Wang,Xue Lin,Younghyun Kim,Naehyuck Chang,Pedram, Massoud IEEE 2014 IEEE transactions on computer-aided design of inte Vol.33 No.6

        <P>Partial shading is a serious obstacle to the effective utilization of photovoltaic (PV) systems since it can result in a significant degradation in the PV system output power. A PV system is organized as a series connection of PV modules, each module comprising a number of series-parallel connected PV cells. Backup PV cell employment and PV module reconfiguration techniques have been proposed to improve the performance of the PV system under the partial shading effects. However, these approaches are not very effective since they are costly in terms of their PV cell count and/or cell connectivity requirements. In contrast, this paper presents a cost-effective, reconfigurable PV module architecture with integrated switches in each PV cell. This paper also presents a dynamic programming algorithm to adaptively produce near-optimal reconfigurations of each PV module so as to maximize the PV system output power under any partial shading pattern. We implement a working prototype of reconfigurable PV module with 16 PV cells and confirm 45.2% output power level improvement. Using accurate PV cell models extracted from prototype measurement, we have demonstrated up to a factor of 2.36X output power improvement of a large-scale PV system comprised of three PV modules with 60 PV cells per module.</P>

      • KCI등재

        Research Progress of CXCR4-Targeting Radioligands for Oncologic Imaging

        Wang Yanzhi,Gao Feng 대한영상의학회 2023 Korean Journal of Radiology Vol.24 No.9

        C-X-C motif chemokine receptor 4 (CXCR4) plays a key role in various physiological functions, such as immune processes and disease development, and can influence angiogenesis, proliferation, and distant metastasis in tumors. Recently, several radioligands, including peptides, small molecules, and nanoclusters, have been developed to target CXCR4 for diagnostic purposes, thereby providing new diagnostic strategies based on CXCR4. Herein, we focus on the recent research progress of CXCR4-targeting radioligands for tumor diagnosis. We discuss their application in the diagnosis of hematological tumors, such as lymphomas, multiple myelomas, chronic lymphocytic leukemias, and myeloproliferative tumors, as well as nonhematological tumors, including tumors of the esophagus, breast, and central nervous system. Additionally, we explored the theranostic applications of CXCR4-targeting radioligands in tumors. Targeting CXCR4 using nuclear medicine shows promise as a method for tumor diagnosis, and further research is warranted to enhance its clinical applicability.

      • SCIESCOPUS

        Single-Source, Single-Destination Charge Migration in Hybrid Electrical Energy Storage Systems

        Yanzhi Wang,Xue Lin,Younghyun Kim,Qing Xie,Pedram, Massoud,Naehyuck Chang IEEE 2014 IEEE transactions on very large scale integration Vol.22 No.12

        <P>In spite of extensive research it is still quite expensive to store electrical energy without converting it to a different form of energy. As of today, no single type of electrical energy storage (EES) element can fulfill all the desirable features of an ideal storage device, e.g., high-efficiency, high-power/energy capacity, low-cost, and long-cycle life. A hybrid EES system (HEES) consists of two or more heterogeneous EES elements, realizing the advantages of each EES element while hiding their weaknesses. HEES systems exhibit superior performance compared with homogeneous EES systems when appropriate charge allocation and replacement policies are developed and used. In addition, charge migration is mandatory because the optimal EES banks for charge allocation and replacement are in general different, and each EES bank has limited storage capacity. This paper formally describes the notion of charge migration efficiency and its optimization. We first define the charge migration architecture and the corresponding charge migration optimization problem. We provide a systematic solution for the single-source, single-destination charge migration problem considering the efficiency variation of the converters, the rate capacity and internal power loss of the storage element, the terminal voltage variation of the storage elements as a function of their state of charge, and so on. We also introduce the optimal solutions for both the time-constrained and -unconstrained versions of the charge migration problem formulations. Experimental results demonstrate significant charge migration efficiency improvement of up to 83.4%.</P>

      • KCI등재

        Seismic experiment and analysis of rectangular bottom strengthened steel-concrete composite columns

        Cun Hui,Yanzhi Zhu,Wan-Lin Cao,Yuanqing Wang 국제구조공학회 2016 Steel and Composite Structures, An International J Vol.20 No.3

        In order to study the working mechanism of rectangular steel-concrete composite columns subjected to compression-bending load and further determine the seismic performance index, a bottom strengthened rectangular steel reinforced concrete (SRC) column with concealed steel plates and a bottom strengthened rectangular concrete filled steel tube (CFST) columns were proposed. Six column models with different configurations were tested under horizontal low cyclic loading. Based on the experiments, the load-bearing capacity, stiffness and degradation process, ductility, hysteretic energy dissipation capacity, and failure characteristics of the models were analyzed. The loadbearing capacity calculation formulas for a normal section and an oblique section of bottom strengthened rectangular steel-concrete composite columns were pesented and a finite element (FE) numerical simulation of the classical specimens was performed. The study shows that the load-bearing capacity, ductility, and seismic energy dissipation capacity of the bottom strengthened rectangular steel-concrete composite columns are significantly improved compared to the conventional rectangular steel-concrete composite columns and the results obtained from the calculation and the FE numerical simulation are in good agreement with those from the experiments. The rectangular steel-concrete composite column with bottom strengthened shows better seismic behavior and higher energy dissipation capacity under suitable constructional requirements and it can be applied to the structure design of highrise buildings.

      • Designing Fault-Tolerant Photovoltaic Systems

        Xue Lin,Yanzhi Wang,Pedram, Massoud,Jaemin Kim,Naehyuck Chang IEEE Computer Society 2014 IEEE design & test Vol.31 No.3

        <P>PV systems are subject to PV cell faults, which lower the output power and shorten the lifespan of the system. This paper presents the design principles and runtime control algorithms of a fault-tolerant PV system which can detect and bypass PV cell faults in situ without any manual interventions.</P>

      • SCIESCOPUSKCI등재

        Models and Experiments for the Main Topologies of MRC-WPT Systems

        Yang, Mingbo,Wang, Peng,Guan, Yanzhi,Yang, Zhenfeng The Korean Institute of Power Electronics 2017 JOURNAL OF POWER ELECTRONICS Vol.17 No.6

        Models and experiments for magnetic resonance coupling wireless power transmission (MRC-WPT) topologies such as the chain topology and branch topology are studied in this paper. Coupling mode theory based energy resonance models are built for the two topologies. Complete energy resonance models including input items, loss coefficients, and coupling coefficients are built for the two topologies. The storage and the oscillation model of the resonant energy are built in the time domain. The effect of the excitation item, loss item, and coupling coefficients on MRC systems are provided in detail. By solving the energy oscillation time domain model, distance enhancing models are established for the chain topology, and energy relocating models are established for the branch topology. Under the assumption that there are no couplings between every other coil or between loads, the maximum transmission capacity conditions are found for the chain topology, and energy distribution models are established for the branch topology. A MRC-WPT experiment was carried out for the verification of the above model. The maximum transmission distance enhancement condition for the chain topology, and the energy allocation model for the branch topology were verified by experiments.

      • Charge Allocation in Hybrid Electrical Energy Storage Systems

        Qing Xie,Yanzhi Wang,Younghyun Kim,Pedram, M.,Naehyuck Chang IEEE 2013 IEEE transactions on computer-aided design of inte Vol.32 No.7

        <P>A hybrid electrical energy storage (HEES) system consists of multiple banks of heterogeneous electrical energy storage (EES) elements placed between a power source and some load devices and providing charge storage and retrieval functions. For an HEES system to perform its desired functions of 1) reducing electricity costs by storing electricity obtained from the power grid at off-peak times when its price is lower, for use at peak times instead of electricity that must be bought then at higher prices, and 2) alleviating problems, such as excessive power fluctuation and undependable power supply, which are associated with the use of large amounts of renewable energy on the grid, appropriate charge management policies must be developed in order to efficiently store and retrieve electrical energy while attaining performance metrics that are close to the respective best values across the constituent EES banks in the HEES system. This paper is the first to formally describe the global charge allocation problem in HEES systems, namely, distributing a specified level of incoming power to a subset of destination EES banks so that maximum charge allocation efficiency is achieved. The problem is formulated as a mixed integer nonlinear program with the objective function set to the global charge allocation efficiency and the constraints capturing key requirements and features of the system such as the energy conservation law, power conversion losses in the chargers, the rate capacity, and self-discharge effects in the EES elements. A rigorous algorithm is provided to obtain near-optimal charge allocation efficiency under a daily charge allocation schedule. A photovoltaic array is used as an example of the power source for the charge allocation process and a heuristic is provided to predict the solar radiation level with a high accuracy. Simulation results using this photovoltaic cell array and a representative HEES system demonstrate up to 25% gain in the charge allocation efficiency by employing the proposed algorithm.</P>

      • Optimizing the Power Delivery Network in a Smartphone Platform

        Woojoo Lee,Yanzhi Wang,Donghwa Shin,Chang, Naehyuck,Pedram, Massoud IEEE 2014 IEEE transactions on computer-aided design of inte Vol.33 No.1

        <P>Smartphones consume a significant amount of power. Indeed, they can hardly provide a full day of use between charging operations even with a 2000 mAh battery. While power minimization and dynamic power management techniques have been heavily explored to improve the power efficiency of modules (processors, memory, display, GPS, etc.) inside a smartphone platform, there is one critical factor that is often overlooked: the power conversion efficiency of the power delivery network (PDN). This paper focuses on dc-dc converters, which play a pivotal role in the PDN of the smartphone platform. Starting from detailed models of the dc-dc converter designs, two optimization methods are presented: 1) static switch sizing to maximize the efficiency of a dc-dc converter under statistical loading profiles and 2) dynamic switch modulation to achieve the high efficiency enhancement under dynamically varying load conditions. To verify the efficacy of the optimization methods in actual smartphone platforms, this paper also presents a characterization procedure for the PDN. The procedure is as follows: 1) group the modules in the smartphone platform together and use profiling to estimate their average and peak power consumption levels and 2) build an equivalent dc-dc converter model for the power delivery path from the battery source to each group of modules and use linear regression to estimate the conversion efficiency of the corresponding equivalent converter. Experimental results demonstrate that the static switch sizing can achieve 6% power conversion efficiency enhancement, which translates to 19% reduction in power loss general usage of the smartphone. The dynamic switch modulation accomplishes similar improvement at the same condition, while also achieving high efficiency enhancement in various load conditions.</P>

      • Concurrent Task Scheduling and Dynamic Voltage and Frequency Scaling in a Real-Time Embedded System With Energy Harvesting

        Lin, Xue,Wang, Yanzhi,Chang, Naehyuck,Pedram, Massoud IEEE 2016 IEEE transactions on computer-aided design of inte Vol.35 No.11

        <P>Energy harvesting is a promising technique to overcome the limit on energy availability and increase the lifespan of battery-powered embedded systems. In this paper, the question of how one can achieve the prolonged lifespan(1) of a real-time embedded system with energy harvesting capability (RTES-EH) is investigated. The RTES-EH comprises a photovoltaic (PV) panel for energy harvesting, a supercapacitor for energy storage, and a real-time sensor node as the embedded load device. A global controller performs simultaneous optimal operating point tracking for the PV panel, state-of-charge (SoC) management for the supercapacitor, and energy-harvesting-aware real-time task scheduling with dynamic voltage and frequency scaling (DVFS) for the sensor node, while employing a precise solar irradiance prediction method. The controller employs a cascaded feedback control structure, where an outer supervisory control loop performs real-time task scheduling with DVFS in the sensor node while maintaining the optimal supercapacitor SoC for improved system availability, and an inner control loop tracks the optimal operating point of the PV panel on the fly. Experimental results show that the proposed global controller lowers the task instance drop rate by up to 63% compared with the baseline controller within the same service time (i.e., from sunrise to sunset).</P>

      • KCI등재

        Models and Experiments for the Main Topologies of MRC-WPT Systems

        Mingbo Yang,Peng Wang,Yanzhi Guan,Zhenfeng Yang 전력전자학회 2017 JOURNAL OF POWER ELECTRONICS Vol.17 No.6

        Models and experiments for magnetic resonance coupling wireless power transmission (MRC-WPT) topologies such as the chain topology and branch topology are studied in this paper. Coupling mode theory based energy resonance models are built for the two topologies. Complete energy resonance models including input items, loss coefficients, and coupling coefficients are built for the two topologies. The storage and the oscillation model of the resonant energy are built in the time domain. The effect of the excitation item, loss item, and coupling coefficients on MRC systems are provided in detail. By solving the energy oscillation time domain model, distance enhancing models are established for the chain topology, and energy relocating models are established for the branch topology. Under the assumption that there are no couplings between every other coil or between loads, the maximum transmission capacity conditions are found for the chain topology, and energy distribution models are established for the branch topology. A MRC-WPT experiment was carried out for the verification of the above model. The maximum transmission distance enhancement condition for the chain topology, and the energy allocation model for the branch topology were verified by experiments.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼