RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Solution-based synthesis of PEDOT:PSS films with electrical conductivity over 6300 S/cm

        Yanbin Shi,Yuqin Zhou,Rongzong Shen,Fengzhen Liu,Yurong Zhou 한국공업화학회 2021 Journal of Industrial and Engineering Chemistry Vol.101 No.-

        Poly(3,4-ethylenedioxythiophene) mixed with poly (styrenesulfonate) (PEDOT:PSS) is considered as oneof the most valuable conductive polymers due to its high conductivity, transparency and mechanicalflexibility. Many experiments have proved that H2SO4 post-treatment is an effective way to enhance theelectrical conductivity of PEDOT:PSSfilms. Here we reported a method for the fabrication of PEDOT:PSSfilms with conductivity as high as 6323.9 364.5 S/cm, based on a two-step H2SO4 post-treatment. Thisvery high conductivity is, as far as we know, the highest reported value for PEDOT:PSSfilms by solutionpreparation. The removal of PSS and redox reaction are the keys to enhance the conductivity of PEDOT:PSSfilms.

      • KCI등재

        Back-Calculation Method of Rock Mass Pressure in a Shallow-Buried Super Large-Span Tunnel Using Upper-Bench CD Method

        Yanbin Luo,Yunfei Wu,Jianxun Chen,Fangfang Dong,Weiwei Liu,Lijun Chen,Yao Li,Zhou Shi 대한토목학회 2022 KSCE JOURNAL OF CIVIL ENGINEERING Vol.26 No.1

        Rock mass pressure has always been a research hotspot in the field of tunnel engineering, especially in the super large-span tunnel, which is characterized by flat section, large excavation span, and complex stress field. Based on the Letuan Tunnel (a bi-directional tunnel with eight traffic lanes) of Binlai expressway expansion project in Shandong Province, China, this paper focused on the calculation method of rock mass pressure and the evolution law of load release in the construction process of the super large-span tunnel excavated by upper-bench central diaphragm (CD) method. Based on field measured data of Letuan Tunnel, the deformation behavior of primary lining and the distribution state of rock mass pressure during the tunnel construction were analyzed. According to the bearing mode of supporting structure, the mechanical models of different construction stages were established. Then, the rock mass pressures in different construction stages were back-calculated using mechanical models and compared with the measured values, and the evolution law of load release during the tunnel construction was discussed. The study results show that the tunnel deformation and rock mass pressure were significantly affected by the construction process and support form, and the excavation span was the key factor affecting the stability of rock mass. For the shallow-buried super large-span tunnel constructed by upper-bench CD method, the primary support of upper bench was under eccentric pressure. The comparison between the back-calculated value and the field measured value indicated that they were similar, and the average relative error was 17.23%. According to the concept of load release coefficient proposed in this paper, the load release coefficient after the pilot tunnel ahead (Part I) excavation reached 63%, and the load release coefficient after the pilot tunnel behind excavation (Part II) was 37%, which means that the rock mass pressure of Part I is increased about 59% due to the excavation of Part II.

      • Static behavior of high strength friction-grip bolt shear connectors in composite beams

        Ying Xing,Yanbin Liu,Caijun Shi,Zhipeng Wang,Qi Guo,Jin-feng Jiao 국제구조공학회 2022 Steel and Composite Structures, An International J Vol.42 No.3

        Superior to traditional welded studs, high strength friction-grip bolted shear connectors facilitate the assembling and demounting of the composite members, which maximizes the potential for efficiency in the construction and retrofitting of new and old structures respectively. Hence, it is necessary to investigate the structural properties of high strength friction-grip bolts used in steel concrete composite beams. By means of push-out tests, an experimental study was conducted on post-installed high strength friction-grip bolts, considering the effects of different bolt size, concrete strength, bolt tensile strength and bolt pretension. The test results showed that bolt shear fracture was the dominant failure mode of all specimens. Based on the loadslip curves, uplifting curves and bolt tensile force curves between the precast concrete slab and steel beam obtained by push-out tests, the anti-slip performance of steel-concrete interface and shear behavior of bolt shank were studied, including the quantitative analysis of anti-slip load, and anti-slip stiffness, frictional coefficient, shear stiffness of bolt shank and ultimate shear capacity. Meanwhile, the interfacial anti-slip stiffness and shear stiffness of bolt shank were defined reasonably. In addition, a total of 56 push-out finite element models verified by the experimental results were also developed, and used to conduct parametric analyses for investigating the shear behavior of high-strength bolted shear connectors in steel-concrete composite beams. Finally, on ground of the test results and finite element simulation analysis, a new design formula for predicting shear capacity was proposed by nonlinear fitting, considering the bolt diameter, concrete strength and bolt tensile strength. Comparison of the calculated value from proposed formula and test results given in the relevant references indicated that the proposed formulas can give a reasonable prediction.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼