RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Maternal undernutrition alters the skeletal muscle development and methylation of myogenic factors in goat offspring

        Zhou Xiaoling,Yan Qiongxian,Liu Liling,Chen Genyuan,Tang Shaoxun,He Zhixiong,Tan Zhiliang 아세아·태평양축산학회 2022 Animal Bioscience Vol.35 No.6

        Objective: The effects of maternal undernutrition during midgestation on muscle fiber histology, myosin heavy chain (MyHC) expression, methylation modification of myogenic factors, and the mammalian target of rapamycin (mTOR) signaling pathway in the skeletal muscles of prenatal and postnatal goats were examined. Methods: Twenty-four pregnant goats were assigned to a control (100% of the nutrients requirement, n = 12) or a restricted group (60% of the nutrients requirement, n = 12) between 45 and 100 days of gestation. Descendants were harvested at day 100 of gestation and at day 90 after birth to collect the femoris muscle tissue. Results: Maternal undernutrition increased (p<0.05) the fiber area of the vastus muscle in the fetuses and enhanced (p<0.01) the proportions of MyHCI and MyHCIIA fibers in offspring, while the proportion of MyHCIIX fibers was decreased (p<0.01). DNA methylation at the +530 cytosine-guanine dinucleotide (CpG) site of the myogenic factor 5 (MYF5) promoter in restricted fetuses was increased (p<0.05), but the methylation of the MYF5 gene at the +274,280 CpG site and of the myogenic differentiation (MYOD) gene at the +252 CpG site in restricted kids was reduced (p<0.05). mTOR protein signals were downregulated (p<0.05) in the restricted offspring. Conclusion: Maternal undernutrition altered the muscle fiber type in offspring, but its relationship with methylation in the promoter regions of myogenic genes needs to be elucidated. Objective: The effects of maternal undernutrition during midgestation on muscle fiber histology, myosin heavy chain (MyHC) expression, methylation modification of myogenic factors, and the mammalian target of rapamycin (mTOR) signaling pathway in the skeletal muscles of prenatal and postnatal goats were examined.Methods: Twenty-four pregnant goats were assigned to a control (100% of the nutrients requirement, n = 12) or a restricted group (60% of the nutrients requirement, n = 12) between 45 and 100 days of gestation. Descendants were harvested at day 100 of gestation and at day 90 after birth to collect the femoris muscle tissue.Results: Maternal undernutrition increased (p<0.05) the fiber area of the vastus muscle in the fetuses and enhanced (p<0.01) the proportions of MyHCI and MyHCIIA fibers in offspring, while the proportion of MyHCIIX fibers was decreased (p<0.01). DNA methylation at the +530 cytosine-guanine dinucleotide (CpG) site of the myogenic factor 5 (MYF5) promoter in restricted fetuses was increased (p<0.05), but the methylation of the MYF5 gene at the +274,280 CpG site and of the myogenic differentiation (MYOD) gene at the +252 CpG site in restricted kids was reduced (p<0.05). mTOR protein signals were downregulated (p<0.05) in the restricted offspring.Conclusion: Maternal undernutrition altered the muscle fiber type in offspring, but its relationship with methylation in the promoter regions of myogenic genes needs to be elucidated.

      • SCIESCOPUSKCI등재

        Effects of Momordica charantia Saponins on In vitro Ruminal Fermentation and Microbial Population

        Kang, Jinhe,Zeng, Bo,Tang, Shaoxun,Wang, Min,Han, Xuefeng,Zhou, Chuanshe,Yan, Qiongxian,He, Zhixiong,Liu, Jinfu,Tan, Zhiliang Asian Australasian Association of Animal Productio 2016 Animal Bioscience Vol.29 No.4

        This study was conducted to investigate the effects of Momordica charantia saponin (MCS) on ruminal fermentation of maize stover and abundance of selected microbial populations in vitro. Five levels of MCS supplements (0, 0.01, 0.06, 0.30, 0.60 mg/mL) were tested. The pH, $NH_3-N$, and volatile fatty acid were measured at 6, 24, 48 h of in vitro mixed incubation fluids, whilst the selected microbial populations were determined at 6 and 24 h. The high dose of MCS increased the initial fractional rate of degradation at t-value = 0 ($FRD_0$) and the fractional rate of gas production (k), but decreased the theoretical maximum of gas production ($V_F$) and the half-life ($t_{0.5}$) compared with the control. The $NH_3-N$ concentration reached the lowest concentration with 0.01 mg MCS/mL at 6 h. The MSC inclusion increased (p<0.001) the molar proportion of butyrate, isovalerate at 24 h and 48 h, and the molar proportion of acetate at 24 h, but then decreased (p<0.05) them at 48 h. The molar proportion of valerate was increased (p<0.05) at 24 h. The acetate to propionate ratio (A/P; linear, p<0.01) was increased at 24 h, but reached the least value at the level of 0.30 mg/mL MCS. The MCS inclusion decreased (p<0.05) the molar proportion of propionate at 24 h and then increased it at 48 h. The concentration of total volatile fatty acid was decreased (p<0.001) at 24 h, but reached the greatest concentration at the level of 0.01 mg/mL and the least concentration at the level of 0.60 mg/mL. The relative abundance of Ruminococcus albus was increased at 6 h and 24 h, and the relative abundance of Fibrobacter succinogenes was the lowest (p<0.05) at 0.60 mg/mL at 6 h and 24 h. The relative abundance of Butyrivibrio fibrisolvens and fungus reached the greatest value (p<0.05) at low doses of MCS inclusion and the least value (p<0.05) at 0.60 mg/mL at 24 h. The present results demonstrates that a high level of MCS quickly inhibits in vitro fermentation of maize stover, while MCS at low doses has the ability to modulate the ruminal fermentation pattern by regulating the number of functional rumen microbes including cellulolytic bacteria and fungi populations, and may have potential as a feed additive applied in the diets of ruminants.

      • KCI등재후보

        — Invited Review — Understanding the functionality of the rumen microbiota: searching for better opportunities for rumen microbial manipulation

        Qi Wenlingli,Xue Ming-Yuan,Jia Ming-Hui,Zhang Shuxian,Yan Qiongxian,Sun Hui-Zeng 아세아·태평양축산학회 2024 Animal Bioscience Vol.37 No.2

        Rumen microbiota play a central role in the digestive process of ruminants. Their remarkable ability to break down complex plant fibers and proteins, converting them into essential organic compounds that provide animals with energy and nutrition. Research on rumen microbiota not only contributes to improving animal production performance and enhancing feed utilization efficiency but also holds the potential to reduce methane emissions and environmental impact. Nevertheless, studies on rumen microbiota face numerous challenges, including complexity, difficulties in cultivation, and obstacles in functional analysis. This review provides an overview of microbial species involved in the degradation of macromolecules, the fermentation processes, and methane production in the rumen, all based on cultivation methods. Additionally, the review introduces the applications, advantages, and limitations of emerging omics technologies such as metagenomics, metatranscriptomics, metaproteomics, and metabolomics, in investigating the functionality of rumen microbiota. Finally, the article offers a forward-looking perspective on the new horizons and technologies in the field of rumen microbiota functional research. These emerging technologies, with continuous refinement and mutual complementation, have deepened our understanding of rumen microbiota functionality, thereby enabling effective manipulation of the rumen microbial community.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼