RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Propagation Dynamics of a Finite-energy Airy Beam with Sinusoidal Phase in Optical Lattice

        Xiaoyuan Huang,Manna Chen,Geng Zhang,Ye Liu,Hongcheng Wang 한국광학회 2020 Current Optics and Photonics Vol.4 No.4

        The propagation of a truncated Airy beam with spatial phase modulation (SPM) is investigated in Kerr nonlinearity with an optical lattice. Before the truncated Airy beam enters the optical lattice, a sinusoidal phase is introduced on the wave-front of the beam. The effect of the spatial phase modulation and optical lattice on propagation behavior is analyzed by direct numerical simulation. It is found that the propagation direction of a truncated Airy beam can be effectively controlled by adjusting the values of phase shift. The effects of optical amplitude, truncation factor, spatial modulation frequency, lattice period and lattice depth on the propagation are discussed in detail. By choosing a high modulation depth, the finite-energy Airy beam can be deflected with a large deflection angle in an optical lattice.

      • Design Considerations of Iron-Based Nanoclusters for Noninvasive Tracking of Mesenchymal Stem Cell Homing

        Huang, Xinglu,Zhang, Fan,Wang, Yu,Sun, Xiaolian,Choi, Ki Young,Liu, Dingbin,Choi, Jin-sil,Shin, Tae-Hyun,Cheon, Jinwoo,Niu, Gang,Chen, Xiaoyuan American Chemical Society 2014 ACS NANO Vol.8 No.5

        <P/><P>Stem-cell-based therapies have attracted considerable interest in regenerative medicine and oncological research. However, a major limitation of systemic delivery of stem cells is the low homing efficiency to the target site. Here, we report a serendipitous finding that various iron-based magnetic nanoparticles (MNPs) actively augment chemokine receptor CXCR4 expression of bone-marrow-derived mesenchymal stem cells (MSCs). On the basis of this observation, we designed an iron-based nanocluster that can effectively label MSCs, improve cell homing efficiency, and track the fate of the cells <I>in vivo</I>. Using this nanocluster, the labeled MSCs were accurately monitored by magnetic resonance imaging and improved the homing to both traumatic brain injury and glioblastoma models as compared to unlabeled MSCs. Our findings provide a simple and safe method for imaging and targeted delivery of stem cells and extend the potential applications of iron-based MNPs in regenerative medicine and oncology.</P>

      • Performance optimization of flexible a-Si:H solar cells with nanotextured plasmonic substrate by tuning the thickness of oxide spacer layer

        Xiao, Huapeng,Wang, Jun,Huang, Hongtao,Lu, Linfeng,Lin, Qingfeng,Fan, Zhiyong,Chen, Xiaoyuan,Jeong, Chaehwan,Zhu, Xufei,Li, Dongdong Elsevier 2015 Nano energy Vol.11 No.-

        <P><B>Abstract</B></P> <P>Plasmonic thin film solar cells deposited on periodically textured photonic crystal substrates have been extensively studied since the substantially enhanced light absorption. The reduction of parasitic absorption losses in the metal and spacer layers becomes one of the key issues to achieve high efficiency solar cells. Herein, plasmonic amorphous silicon (a-Si:H) flexible thin film solar cells with different thickness of oxide spacer layers are systematically investigated. An increase of the spacer layer thickness leads to an evolution in surface morphology of AZO and final devices. More intriguingly, the increase of spacer layer thickness reduces the absorption in Ag layer while induces more absorption in spacer layer. The highest light absorption in silicon layer is observed as applying 100nm spacer layer, which is further verified by electrical measurements. Our observations demonstrate a versatile and convenient route towards rational design of light harvesting nanostructure for high performance plasmonic solar cells based on a broad range of materials.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Amorphous silicon thin film solar cells are constructed on patterned substrates. </LI> <LI> The devices properties are studied as a function of spacer layer thickness. </LI> <LI> An increase of spacer layer thickness reduces the absorption loss of Ag layer. </LI> <LI> The device with 100nm spacer layer confines more incident light in silicon layer. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • A nanoparticle formula for delivering siRNA or miRNAs to tumor cells in cell culture and in vivo

        Choi, Ki Young,Silvestre, Oscar F,Huang, Xinglu,Hida, Naoki,Liu, Gang,Ho, Don N,Lee, Seulki,Lee, Sang Wook,Hong, Jong In,Chen, Xiaoyuan Nature Publishing Group, a division of Macmillan P 2014 NATURE PROTOCOLS -ELECTRONIC EDITION- Vol.9 No.8

        To improve RNA delivery, we present a protocol to produce an RNA carrier based on a Zn(II)-dipicolylamine (Zn-DPA) analog, which is an artificial receptor for phosphate anion derivatives. We further functionalized this Zn-DPA analog to hyaluronic acid (HA)-based self-assembled nanoparticles (HA-NPs) with a hydrodynamic diameter of 100 nm by conjugating amine-functionalized Zn-DPA molecules onto the HA-NPs through amide formation, resulting in efficient tumor-targeted delivery of RNAs (siRNAs, miRNA or other short oligoribonucleotides) and small-molecule drugs. The functional group of Zn-DPA can be converted into other groups such as a carboxylic or thiol group, and the DPA analog can be covalently attached to a variety of existing and novel platforms or formulations for the development of multifunctional materials via standard bioconjugation techniques. Protocols for RNA formulation and delivery into tumor tissues and tumor cells are also described. Our design strategy offers a versatile and practical method for delivering both RNA and chemotherapeutics to tumor cells and expands existing nanomaterial capabilities to further the field of drug and gene delivery.

      • Versatile RNA Interference Nanoplatform for Systemic Delivery of RNAs

        Choi, Ki Young,Silvestre, Oscar F.,Huang, Xinglu,Min, Kyung Hyun,Howard, Gregory P.,Hida, Naoki,Jin, Albert J.,Carvajal, Nicole,Lee, Sang Wook,Hong, Jong-In,Chen, Xiaoyuan American Chemical Society 2014 ACS NANO Vol.8 No.5

        <P/><P>Development of nontoxic, tumor-targetable, and potent <I>in vivo</I> RNA delivery systems remains an arduous challenge for clinical application of RNAi therapeutics. Herein, we report a versatile RNAi nanoplatform based on tumor-targeted and pH-responsive nanoformulas (NFs). The NF was engineered by combination of an artificial RNA receptor, Zn(II)-DPA, with a tumor-targetable and drug-loadable hyaluronic acid nanoparticle, which was further modified with a calcium phosphate (CaP) coating by <I>in situ</I> mineralization. The NF can encapsulate small-molecule drugs within its hydrophobic inner core and strongly secure various RNA molecules (siRNAs, miRNAs, and oligonucleotides) by utilizing Zn(II)-DPA and a robust CaP coating. We substantiated the versatility of the RNAi nanoplatform by demonstrating effective delivery of siRNA and miRNA for gene silencing or miRNA replacement into different human types of cancer cells <I>in vitro</I> and into tumor-bearing mice <I>in vivo</I> by intravenous administration. The therapeutic potential of NFs coloaded with an anticancer drug doxorubicin (Dox) and multidrug resistance 1 gene target siRNA (siMDR) was also demonstrated in this study. NFs loaded with Dox and siMDR could successfully sensitize drug-resistant OVCAR8/ADR cells to Dox and suppress OVCAR8/ADR tumor cell proliferation <I>in vitro</I> and tumor growth <I>in vivo</I>. This gene/drug delivery system appears to be a highly effective nonviral method to deliver chemo- and RNAi therapeutics into host cells.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼