RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Effects of Oxygen Content on the Simultaneous Microbial Removal of SO2 and NOx in Biotrickling Towers

        Xing Chun Wang,Xiao Yi Bi,Pei Shi Sun,Jin Quan Chen,Ping Zou,Xiao Ming Ma,Jing Zhang,Hai Yu Wang,Xiao Yi Xu 한국생물공학회 2015 Biotechnology and Bioprocess Engineering Vol.20 No.5

        This study uses microbial methods to research the influence of oxygen (O2) content on the removal efficiency of sulfur dioxide (SO2) and nitrogen oxides (NOx) in a tandem twin-towers desulfurization and denitrification process system. Oxygen can play a significant role in biotrickling towers. Other important factors had already been optimized prior to the study, including inlet concentration, gas flow rate, and temperature. SO2 and NOx were prepared by a chemical method. A gas flow meter was used to regulate nitrogen (N2) that had been stored in steel cylinders. In this way, the O2 content was adjusted in the biotrickling towers by controlling the N2 flow rate. Five gradients of O2 content were selected for investigation, namely 4, 8, 12, 16, and 20%. Results indicated that the SO2 removal efficiency from mixed gas (SO2 and NOx) can reach 100%, from all of the five O2 gradients, in biotrickling towers. In a tandem twin-towers desulfurization and denitrification process system, the NOx removal efficiency and the inlet concentration of nitrogen dioxide (NO2) gradually increased as the O2 content increased. Specifically, the average removal efficiency of NOx increased from 49.28 to 80.85% as the O2 content changed from 4 to 20%. The oxygen levels influenced the removal of NOx but the SO2 removal efficiency in mixed gas was always stable.

      • SCIESCOPUS

        <i>Eucalyptus globulus</i> Inhibits Inflammasome-Activated Pro-Inflammatory Responses and Ameliorate Monosodium Urate-Induced Peritonitis in Murine Experimental Model

        Ji, Young-Eun,Sun, Xiao,Kim, Myong-Ki,Li, Wan Yi,Lee, Sang Woo,Koppula, Sushruta,Yu, Sang-Hyeun,Kim, Han-Bi,Kang, Tae-Bong,Lee, Kwang-Ho World Scientific Publishing Company 2018 The American journal of Chinese medicine Vol.46 No.2

        <P><I>Eucalyptus globulus</I> Labill. (<I>E. globulus,</I> Myrtaceae) is used in Europe as a traditional folk remedy for inflammation-related disorders such as arthritis, diabetes, asthma, and gout. We investigated this study to evaluate the protective effects of <I>E. globulus</I> extract (EG) on inflammatory responses, and provide scientific and mechanistic evidence in <I>in vitro</I> and <I>in vivo</I> experimental models. LPS-stimulated murine bone marrow-derived macrophages (BMDMs) were used to study the regulatory effect of EG on inflammasome activation <I>in vitro</I>. Monosodium urate (MSU)-induced peritonitis was used to study the effect of EG in an <I>in vivo</I> murine model. EG suppressed IL-<TEX>$ 1\beta $</TEX> secretion via the regulation of apoptosis-associated speck-like proteins containing a CARD (ASC) oligomerization and caspase-1 maturation, leading to the inhibition of inflammasome activation. In the <I>in vivo</I> study, EG suppressed the MSU-induced peritonitis by attenuating interleukin (IL)-1<TEX>$ \beta $</TEX>, providing scientific support for its traditional use in the treatment of inflammation-related disorders.</P>

      • SCIESCOPUSKCI등재
      • KCI등재

        Naringin and Naringenin Relax Rat Tracheal Smooth by Regulating BKCa Activation

        Rui Shi,Jia-Wen Xu,Zi-Ting Xiao,Ruo-Fei Chen,Yi-Lin Zhang,Jia-Bi Lin,Ke-Ling Cheng,Gu-Yi Wei,Pei-Bo Li,Wen-Liang Zhou,Wei-Wei Su 한국식품영양과학회 2019 Journal of medicinal food Vol.22 No.9

        Naringin and its aglycone, naringenin, occur naturally in our regular diet and traditional Chinese medicines. This study aimed to detect an effective therapeutic approach for cough variant asthma (CVA) through evaluating the relaxant effect of these two bioactive herbal monomers as antitussive and antiasthmatic on rat tracheal smooth muscle. The relaxant effect was determined by measuring muscular tension with a mechanical recording system in rat tracheal rings. Cytosolic Ca2+ concentration was measured using a confocal imaging system in primary cultured tracheal smooth muscle cells. In rat tracheal rings, addition of both naringin and naringenin could concentration dependently relax carbachol (CCh)-evoked tonic contraction. This epithelium-independent relaxation could be suppressed by BaCl2, tetraethylammonium, and iberiotoxin (IbTX), but not by glibenclamide. After stimulating primary cultured tracheal smooth muscle cells by CCh or high KCl, the intracellular Ca2+ increase could be inhibited by both naringin and naringenin, respectively. This reaction was also suppressed by IbTX. These results demonstrate that both naringin and naringenin can relax tracheal smooth muscle through opening big conductance Ca2+-activated K+ channel, which mediates plasma membrane hyperpolarization and reduces Ca2+ influx. Our data indicate a potentially effective therapeutic approach of naringin and naringenin for CVA.

      • SCIESCOPUSKCI등재

        The role of ginsenoside Rb1, a potential natural glutathione reductase agonist, in preventing oxidative stress-induced apoptosis of H9C2 cells

        Fan, Hui-Jie,Tan, Zhang-Bin,Wu, Yu-Ting,Feng, Xiao-Reng,Bi, Yi-Ming,Xie, Ling-Peng,Zhang, Wen-Tong,Ming, Zhi,Liu, Bin,Zhou, Ying-Chun The Korean Society of Ginseng 2020 Journal of Ginseng Research Vol.44 No.2

        Background: Oxidative stress-induced cardiomyocytes apoptosis is a key pathological process in ischemic heart disease. Glutathione reductase (GR) reduces glutathione disulfide to glutathione (GSH) to alleviate oxidative stress. Ginsenoside Rb1 (GRb1) prevents the apoptosis of cardiomyocytes; however, the role of GR in this process is unclear. Therefore, the effects of GRb1 on GR were investigated in this study. Methods: The antiapoptotic effects of GRb1 were evaluated in H9C2 cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, annexin V/propidium iodide staining, and Western blotting. The antioxidative effects were measured by a reactive oxygen species assay, and GSH levels and GR activity were examined in the presence and absence of the GR inhibitor 1,3-bis-(2-chloroethyl)-1-nitrosourea. Molecular docking and molecular dynamics simulations were used to investigate the binding of GRb1 to GR. The direct influence of GRb1 on GR was confirmed by recombinant human GR protein. Results: GRb1 pretreatment caused dose-dependent inhibition of tert-butyl hydroperoxide-induced cell apoptosis, at a level comparable to that of the positive control N-acetyl-L-cysteine. The binding energy between GRb1 and GR was positive (-6.426 kcal/mol), and the binding was stable. GRb1 significantl reduced reactive oxygen species production and increased GSH level and GR activity without altering GR protein expression in H9C2 cells. Moreover, GRb1 enhanced the recombinant human GR protein activity in vitro, with a half-maximal effective concentration of ≈2.317 μM. Conversely, 1,3-bis-(2-chloroethyl)-1-nitrosourea co-treatment significantly abolished the GRb1's apoptotic and antioxidative effects of GRb1 in H9C2 cells. Conclusion: GRb1 is a potential natural GR agonist that protects against oxidative stress-induced apoptosis of H9C2 cells.

      • KCI등재

        The role of ginsenoside Rb1, a potential natural glutathione reductase agonist, in preventing oxidative stress-induced apoptosis of H9C2 cells

        Hui-Jie Fan,Zhang-Bin Tan,Yu-Ting Wu,Xiao-Reng Feng,Yi-Ming Bi,Ling-Peng Xie,Wen-Tong Zhang,Zhi Ming,Bin Liu,Ying-Chun Zhou 고려인삼학회 2020 Journal of Ginseng Research Vol.44 No.2

        Background: Oxidative stress-induced cardiomyocytes apoptosis is a key pathological process inischemic heart disease. Glutathione reductase (GR) reduces glutathione disulfide to glutathione (GSH) toalleviate oxidative stress. Ginsenoside Rb1 (GRb1) prevents the apoptosis of cardiomyocytes; however,the role of GR in this process is unclear. Therefore, the effects of GRb1 on GR were investigated in thisstudy. Methods: The antiapoptotic effects of GRb1 were evaluated in H9C2 cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, annexin V/propidium iodide staining, and Western blotting. Theantioxidative effects were measured by a reactive oxygen species assay, and GSH levels and GR activitywere examined in the presence and absence of the GR inhibitor 1,3-bis-(2-chloroethyl)-1-nitrosourea. Molecular docking and molecular dynamics simulations were used to investigate the binding of GRb1 toGR. The direct influence of GRb1 on GR was confirmed by recombinant human GR protein. Results: GRb1 pretreatment caused dose-dependent inhibition of tert-butyl hydroperoxide-induced cellapoptosis, at a level comparable to that of the positive control N-acetyl-L-cysteine. The binding energybetween GRb1 and GR was positive ( 6.426 kcal/mol), and the binding was stable. GRb1 significantlyreduced reactive oxygen species production and increased GSH level and GR activity without altering GRprotein expression in H9C2 cells. Moreover, GRb1 enhanced the recombinant human GR protein activityin vitro, with a half-maximal effective concentration of z2.317 mM. Conversely, 1,3-bis-(2-chloroethyl)-1-nitrosourea co-treatment significantly abolished the GRb1’s apoptotic and antioxidative effects of GRb1in H9C2 cells. Conclusion: GRb1 is a potential natural GR agonist that protects against oxidative stresseinducedapoptosis of H9C2 cells.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼