RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Design and evaluation of a 7-DOF cable-driven upper limb exoskeleton

        Feiyun Xiao,Yongsheng Gao,Yong Wang,Yanhe Zhu,Jie Zhao 대한기계학회 2018 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.32 No.2

        This paper presents a seven degrees of freedom cable-driven upper limb exoskeleton (CABXLexo-7), which is compact, lightweight, and comfortable for post-stroke patients. To achieve the compactness of exoskeleton, two types of cable-driven differential mechanisms were designed. The cable-conduit mechanisms were applied to transmit the power of motors mounted on the backboard to the corresponding joints, then the whole weight of the exoskeleton could be light to ensure a comfortable motion assistance. In the course of experiments, the surface electromyography signals of major muscles related with the movements of upper limb were collected to evaluate the assistant ability of exoskeleton. The experimental results showed that the activation levels of corresponding muscles were reduced by using the seven degrees of freedom cable-driven upper limb exoskeleton in the course of rehabilitation, and it demonstrated that the exoskeleton can provide effective movements assistance to the post-stroke patients.

      • KCI등재

        Machine Learning-Based Prediction of COVID-19 Severity and Progression to Critical Illness Using CT Imaging and Clinical Data

        Purkayastha Subhanik,Xiao Yanhe,Jiao Zhicheng,Thepumnoeysuk Rujapa,Halsey Kasey,Wu Jing,Tran Thi My Linh,Hsieh Ben,Choi Ji Whae,Wang Dongcui,Vallières Martin,Wang Robin,Collins Scott,Feng Xue,Feldman 대한영상의학회 2021 Korean Journal of Radiology Vol.22 No.7

        Objective: To develop a machine learning (ML) pipeline based on radiomics to predict Coronavirus Disease 2019 (COVID-19) severity and the future deterioration to critical illness using CT and clinical variables. Materials and Methods: Clinical data were collected from 981 patients from a multi-institutional international cohort with real-time polymerase chain reaction-confirmed COVID-19. Radiomics features were extracted from chest CT of the patients. The data of the cohort were randomly divided into training, validation, and test sets using a 7:1:2 ratio. A ML pipeline consisting of a model to predict severity and time-to-event model to predict progression to critical illness were trained on radiomics features and clinical variables. The receiver operating characteristic area under the curve (ROC-AUC), concordance index (C-index), and time-dependent ROC-AUC were calculated to determine model performance, which was compared with consensus CT severity scores obtained by visual interpretation by radiologists. Results: Among 981 patients with confirmed COVID-19, 274 patients developed critical illness. Radiomics features and clinical variables resulted in the best performance for the prediction of disease severity with a highest test ROC-AUC of 0.76 compared with 0.70 (0.76 vs. 0.70, p = 0.023) for visual CT severity score and clinical variables. The progression prediction model achieved a test C-index of 0.868 when it was based on the combination of CT radiomics and clinical variables compared with 0.767 when based on CT radiomics features alone (p < 0.001), 0.847 when based on clinical variables alone (p = 0.110), and 0.860 when based on the combination of visual CT severity scores and clinical variables (p = 0.549). Furthermore, the model based on the combination of CT radiomics and clinical variables achieved time-dependent ROC-AUCs of 0.897, 0.933, and 0.927 for the prediction of progression risks at 3, 5 and 7 days, respectively. Conclusion: CT radiomics features combined with clinical variables were predictive of COVID-19 severity and progression to critical illness with fairly high accuracy.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼