RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Study on treatment of acid mine drainage by nano zero-valent iron synergistic with SRB immobilized particles

        Xianjun Wang,Junzhen Di,Bing Liang,Yu Yang,Yanrong Dong,Mingxin Wang 대한환경공학회 2021 Environmental Engineering Research Vol.26 No.5

        In view of the serious pollution and high cost of treatment of acid mine drainage (AMD) in coal mine, the polyving akohol (PVA) and boric acid embedding cross-linking method was used to prepare the immobilized particles for treatment of AMD with sulfate-reducing bacteria (SRB) and nano zero-valent iron (nano-Fe⁰) as the main body. In order to explore the specification and dosage of each matrix component of immobilized particle, a series of single factor tests and orthogonal tests were carried out to determine the optimal ratio of each matrix component. The results shows that when the SRB quality additive percentage was 30%, the nano-Fe0 dosage was 4%, the corn cob particle size was 60 mesh and the dosage was 3%, the SO₄<SUP>2-</SUP>, Cr<SUP>6+</SUP> and Cr<SUP>3+</SUP> removal rates were 82.99%, 99.78% and 38.78%, respectively, the TFe and COD release rates were 4.26 ㎎·L<SUP>-1</SUP> and 1,033.4 ㎎·L<SUP>-1</SUP>, respectively, and the pH value was 8.04, and the treatment effect was the best.

      • SCIESCOPUSKCI등재

        Improvement of Fermentation and Nutritive Quality of Straw-grass Silage by Inclusion of Wet Hulless-barley Distillers' Grains in Tibet

        Yuan, Xianjun,Yu, Chengqun,Shimojo, M.,Shao, Tao Asian Australasian Association of Animal Productio 2012 Animal Bioscience Vol.25 No.4

        In order to develop methods that would enlarge the feed resources in Tibet, mixtures of hulless-barley straw and tall fescue were ensiled with four levels (0, 10%, 20%, and 30% of fresh weight) of wet hulless-barley distillers' grains (WHDG). The silos were opened after 7, 14 or 30 d of ensiling, and the fermentation characteristics and nutritive quality of the silages were analyzed. WHDG addition significantly improved fermentation quality, as indicated by the faster decline of pH, rapid accumulation of lactic acid (LA) (p<0.05), and lower butyric acid content and ammonia-N/total N (p<0.05) as compared with the control. These results indicated that WHDG additions not only effectively inhibited the activity of aerobic bacteria, but also resulted in faster and greatly enhanced LA production and pH value decline, which restricted activity of undesirable bacteria, resulting in more residual water soluble carbohydrates (WSC) in the silages. The protein content of WHDG-containing silages were significantly higher (p<0.05) higher than that of the control. In conclusion, the addition of WHDG increased the fermentation and nutritive quality of straw-grass silage, and this effect was more marked when the inclusion rate of WHDG was greater than 20%.

      • KCI등재

        Ellagic acid exerts anti‑fibrotic effects on hypertrophic scar fibroblasts via inhibition of TGF‑β1/Smad2/3 pathway

        Liu Xianjun,Gao Xinxin,Li Hao,Li Zhandong,Wang Xiaoe,Zhang Li,Wang Bo,Chen Xinxin,Meng Xianglong,Yu Jiaao 한국응용생명화학회 2021 Applied Biological Chemistry (Appl Biol Chem) Vol.64 No.5

        Hypertrophic scar (HS) is a kind of serious pathological scar with no currently effective treatment. HS fibroblasts (HSFs) are the main effector cells for HS formation. Ellagic acid (EA) exerts regulatory effects in some diseases, but its role in HS remains unclear. This study aimed to evaluate the effect of EA on the fibrotic phenotypes of HSFs and to further investigate the downstream signaling mechanism. The cell counting kit-8 (CCK-8) assay was used to perform cytotoxicity and proliferation assays. HSFs migration was assessed using wound healing and transwell assays. HSFs contraction was measured by a collagen lattice contraction assay and detection of α-smooth muscle actin (α-SMA) expression. The levels of mRNA and protein were determined by qPCR and western blotting, respectively. The results showed that EA inhibited the proliferation, migration, and contraction of HSFs and collagen expression in HSFs in a dose-dependent manner. Furthermore, EA not only suppressed the Smad2/3 pathway but also reversed TGF-β1- induced activation of the Smad2/3 pathway and up-regulation of the fibrotic cellular phenotypes in HSFs. These findings demonstrate that EA exerts anti-fibrotic effects on HSFs by blocking the TGF-β1/Smad2/3 pathway, which indicates that EA is a potential therapeutic candidate for treatment of HS.

      • SCIESCOPUSKCI등재

        Effect of Applying Molasses and Propionic Acid on Fermentation Quality and Aerobic Stability of Total Mixed Ration Silage Prepared with Whole-plant Corn in Tibet

        Chen, Lei,Guo, Gang,Yuan, Xianjun,Shimojo, Masataka,Yu, Chengqun,Shao, Tao Asian Australasian Association of Animal Productio 2014 Animal Bioscience Vol.27 No.3

        The objective of this study was to evaluate the effects of molasses and propionic acid on the fermentation quality and aerobic stability of total mixed ration (TMR) silages prepared with whole-plant corn in Tibet. TMR (354 g/kg DM) was ensiled with four different treatments: no additive (control), molasses (M), propionic acid (P), and molasses+propionic acid (PM), in laboratory silos (250 mL) and fermented for 45 d. Silos were opened and silages were subjected to an aerobic stability test for 12 days, in which chemical and microbiological parameters of TMR silages were measured to determined the aerobic deterioration. After 45 d of ensiling, the four TMR silages were of good quality with low pH value and ammonia/total N (AN), and high lactic acid (LA) content and V-scores. M silage showed the highest (p<0.05) LA content and higher dry matter (DM) recovery than the control and P silages. P silage had lower (p<0.05) LA content than the control silage. During aerobic exposure, lactic acid contents decreased gradually in the control and M silages, while that of P and PM silages increased, and the peak values were observed after 9 d. M silage had similar yeast counts with the control silage (> $10^5$ cfu/g FM), however, it appeared to be more stable as indicated by a delayed pH value increase. P and PM silages showed fewer yeasts (< $10^5$ cfu/g FM) (p<0.05) and were more stable than the control and M silages during aerobic exposure. It was concluded that M application increased LA content and improved aerobic stability of TMR silage prepared with whole-plant corn in Tibet. P application inhibited lactic acid production during ensiling, and apparently preserved available sugars which stimulated large increases in lactic acid during aerobic exposure stage, which resulted in greater aerobic stability of TMR silage.

      • SCIESCOPUSKCI등재

        Effects of Acanthopanax senticosus Polysaccharide Supplementation on Growth Performance, Immunity, Blood Parameters and Expression of Pro-inflammatory Cytokines Genes in Challenged Weaned Piglets

        Han, Jie,Bian, Lianquan,Liu, Xianjun,Zhang, Fei,Zhang, Yiran,Yu, Ning Asian Australasian Association of Animal Productio 2014 Animal Bioscience Vol.27 No.7

        To investigate the effect of dietary Acanthopanax senticosus polysaccharide (ASPS) on growth performance, immunity, blood parameters and mRNA expression of pro-inflammatory cytokines in immunologically challenged piglets, an experiment employing $2{\times}2$ factorial arrangement concerning dietary ASPS treatment (0 or 800 mg/kg) and immunological challenge (lipopolysaccharide [LPS] or saline injection) was conducted with 64 crossbred piglets (weaned at 28 d of age, average initial body weight of $7.25{\pm}0.21kg$) assigned to two dietary ASPS treatments with 8 replicates of 4 pigs each. Half of the piglets of per dietary treatment were injected with LPS or saline on d 14. Blood samples were obtained at 3 h after immunological injection on d 14 and piglets were slaughtered to obtain spleen samples on d 21. Dietary ASPS did not affect average daily gain (ADG) (p = 0.634), average daily feed intake (ADFI) (p = 0.655), and gain:feed (p = 0.814) prior to LPS challenge. After LPS challenge, for LPS-challenged pigs those fed ASPS had higher ADG and ADFI than the non-supplemented group (p<0.05), and an interaction between $LPS{\times}ASPS$ was observed on the two indices (p<0.05). Dietary ASPS improved lymphocyte proliferation among saline-injected and LPS-injected pigs (p<0.05). Interaction between $LPS{\times}ASPS$ was also revealed on lymphocyte proliferation (p<0.05). Circulatory concentration of IgG was influenced neither by ASPS (p = 0.803) or LPS (p = 0.692), nor their interaction (p = 0.289). Plasma concentration and spleen mRNA expression of interleukin-1beta (IL-$1{\beta}$), interleukin-6 (IL-6), and tumor necrosis factor (TNF)-${\alpha}$ were induced to increase (p<0.05) by LPS challenge, in contrast, these indices were decreased by dietary ASPS (p<0.05), and interactions were found on these cytokines (p<0.05). For LPS-challenged pigs, dietary ASPS also reduced the circulating concentration and spleen mRNA expression of IL-$1{\beta}$, IL-6 as well as TNF-${\alpha}$ (p<0.05). The interaction between $LPS{\times}ASPS$ was also observed on the circulating concentration of insulin-like growth factor-I, ${\alpha}$-acid glycoprotein (${\alpha}$-AGP), nonesterified fatty acid, and glucose (p<0.05). The results of this study demonstrate that dietary ASPS can modulate the release of pro-inflammatory cytokines during immunological challenge, which might enable piglets to achieve better growth performance.

      • SCIESCOPUSKCI등재

        The Nedd8-activating enzyme inhibitor MLN4924 suppresses colon cancer cell growth via triggering autophagy

        Lv, Yongzhu,Li, Bing,Han, Kunna,Xiao, Yang,Yu, Xianjun,Ma, Yong,Jiao, Zhan,Gao, Jianjun The Korean Society of Pharmacology 2018 The Korean Journal of Physiology & Pharmacology Vol.22 No.6

        Neddylation is a post-translational protein modification process. MLN4924 is a newly discovered pharmaceutical neddylation inhibitor that suppresses cancer growth with several cancer types. In our study, we first investigated the effect of MLN4924 on colon cancer cells (HCT116 and HT29). MLN4924 significantly inhibited the neddylation of cullin-1 and colon cancer cell growth in a time and dose-dependent manner. MLN4924 induced G2/M cell cycle arrest and apoptosis in HCT116 and HT29 cells. Moreover, MLN4924 also triggered autophagy in HCT116 and HT29 cells via suppressing the PI3K/AKT/mTOR pathway. Inhibiting autophagy by autophagy inhibitor 3-MA or ATG5 knockdown reversed the function of MLN4924 in suppressing colon cancer cell growth and cell death. Interestingly, MLN4924 suppresses colon cell growth in a xenograft model. Together, our finding revealed that blocking neddylation is an attractive colon cancer therapy strategy, and autophagy might act as a novel anti-cancer mechanism for the treatment of colon cancer by MLN4924.

      • KCI등재

        The Nedd8-activating enzyme inhibitor MLN4924 suppresses colon cancer cell growth via triggering autophagy

        Yongzhu Lv,Bing Li,Kunna Han,Yang Xiao,Xianjun Yu,Yong Ma,Zhan Jiao,Jianjun Gao 대한생리학회-대한약리학회 2018 The Korean Journal of Physiology & Pharmacology Vol.22 No.6

        Neddylation is a post-translational protein modification process. MLN4924 is a newly discovered pharmaceutical neddylation inhibitor that suppresses cancer growth with several cancer types. In our study, we first investigated the effect of MLN4924 on colon cancer cells (HCT116 and HT29). MLN4924 significantly inhibited the neddylation of cullin-1 and colon cancer cell growth in a time and dose-dependent manner. MLN4924 induced G2/M cell cycle arrest and apoptosis in HCT116 and HT29 cells. Moreover, MLN4924 also triggered autophagy in HCT116 and HT29 cells via suppressing the PI3K/AKT/mTOR pathway. Inhibiting autophagy by autophagy inhibitor 3-MA or ATG5 knockdown reversed the function of MLN4924 in suppressing colon cancer cell growth and cell death. Interestingly, MLN4924 suppresses colon cell growth in a xenograft model. Together, our finding revealed that blocking neddylation is an attractive colon cancer therapy strategy, and autophagy might act as a novel anti-cancer mechanism for the treatment of colon cancer by MLN4924.

      • KCI등재

        Complex roles of the stroma in the intrinsic resistance to gemcitabine in pancreatic cancer: where we are and where we are going

        Chen Liang,Si Shi,Qingcai Meng,Dingkong Liang,Shunrong Ji,Bo Zhang,Yi Qin,Jin Xu,Quanxing Ni,Xianjun Yu 생화학분자생물학회 2017 Experimental and molecular medicine Vol.49 No.-

        Pancreatic ductal adenocarcinoma (PDAC) is among the most devastating human malignancies. The poor clinical outcome in PDAC is partly attributed to a growth-permissive tumor microenvironment. In the PDAC microenvironment, the stroma is characterized by the development of extensive fibrosis, with stromal components outnumbering pancreatic cancer cells. Each of the components within the stroma has a distinct role in conferring chemoresistance to PDAC, and intrinsic chemoresistance has further worsened this pessimistic prognosis. The nucleoside analog gemcitabine (GEM) is usually the recommended first-line chemotherapeutic agent for PDAC patients and is given alone or in combination with other agents. The mechanisms of intrinsic resistance to GEM are an active area of ongoing research. This review highlights the important role the complex structure of stroma in PDAC plays in the intrinsic resistance to GEM and discusses whether antistroma therapy improves the efficacy of GEM. The addition of antistroma therapy combined with GEM is expected to be a novel therapeutic strategy with significant survival benefits for PDAC patients.

      • KCI등재

        Functional significance of cholesterol metabolism in cancer: from threat to treatment

        Xiao Mingming,Xu Jin,Wang Wei,Zhang Bo,Liu Jiang,Li Jialin,Xu Hang,Zhao Yingjun,Yu Xianjun,Shi Si 생화학분자생물학회 2023 Experimental and molecular medicine Vol.55 No.-

        Cholesterol is an essential structural component of membranes that contributes to membrane integrity and fluidity. Cholesterol homeostasis plays a critical role in the maintenance of cellular activities. Recently, increasing evidence has indicated that cholesterol is a major determinant by modulating cell signaling events governing the hallmarks of cancer. Numerous studies have shown the functional significance of cholesterol metabolism in tumorigenesis, cancer progression and metastasis through its regulatory effects on the immune response, ferroptosis, autophagy, cell stemness, and the DNA damage response. Here, we summarize recent literature describing cholesterol metabolism in cancer cells, including the cholesterol metabolism pathways and the mutual regulatory mechanisms involved in cancer progression and cholesterol metabolism. We also discuss various drugs targeting cholesterol metabolism to suggest new strategies for cancer treatment.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼