RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Effects of N-acetylcysteine on the energy status and antioxidant capacity in heart and liver of cold-stressed broilers

        Li Chengcheng,Peng Meng,Liao Man,Guo Shuangshuang,Hou Yongqing,Ding Binying,Wu Tao,Yi Dan 아세아·태평양축산학회 2020 Animal Bioscience Vol.33 No.9

        Objective: Cold stress induces oxidative damage and impairs energy status of broilers. N-acetylcysteine (NAC) exhibits antioxidant properties and modulates energy metabolism of animals. This study was conducted to investigate the effects of NAC on energy status and antioxidant capacity of heart and liver in the cold-stressed broilers. Methods: The experiment consisted of 4 treatments in a 2×2 factorial arrangement with two diets (basal diet or plus 0.1% NAC) and two ambient temperatures (thermoneutral [conventional ambient temperature] or cold stress [10°C±1°C during days 15 to 42]). Results: No ascites were seen in cold-stressed broilers. NAC did not attenuate the impaired growth performance of stressed birds. However, NAC decreased plasma asparagine but increased aspartate levels in cold-stressed birds (p<0.05). NAC reduced hepatic adenosine triphosphate (ATP) but elevated adenosine diphosphate contents in unstressed birds (p< 0.05). The hepatic ratio of adenosine monophosphate (AMP) to ATP was increased in birds fed NAC (p<0.05). NAC decreased plasma malondialdehyde (MDA) level and cardiac total superoxide dismutase (T-SOD) activity in unstressed birds, but increased hepatic activities of T-SOD, catalase and glutathione peroxidase in stressed birds (p<0.05). NAC down-regulated hepatic AMP-activated protein kinase but up-regulated cardiac heme-oxigenase mRNA expression in stressed birds, and decreased expression of hepatic peroxisome proliferator-activated receptor coactivator-1α as well as hypoxia-inducible factor-1α in liver and heart of birds. Conclusion: Dietary NAC did not affect energy status but enhanced the hepatic antioxidant capacity by increasing the activities of antioxidant enzymes in cold-stressed broilers.

      • SCISCIESCOPUS

        Top-squark in natural SUSY under current LHC run-2 data

        Han, Chengcheng,Ren, Jie,Wu, Lei,Yang, Jin Min,Zhang, Mengchao Springer-Verlag 2017 European Physical Journal C Vol.77 No.2

        <P>We utilize the recent LHC-13 TeV data to study the lower mass bound on the top-squark (stop) in natural supersymmetry. We recast the LHC sparticle inclusive search of (>= 1) jets+E-T with alpha(T) variable, the direct stop pair search (1-lepton channel and all-hadronic channel) and the monojet analyses. We find that these searches are complementary depending on stop and higgsino masses: for a heavy stop the all-hadronic stop pair search provides the strongest bound, for an intermediate stop the inclusive SUSY analysis with alpha(T) variable is most efficient, while for a compressed stop-higgsino scenario the monojet search plays the key role. Finally, the lower mass bound on a stop is: (1) 320 GeV for compressed stop-higgsino scenario (mass splitting less than 20 GeV); (2) 765 (860) GeV for higgsinos lighter than 300 (100) GeV.</P>

      • SCISCIESCOPUS

        Constraining top partner and naturalness at the LHC and TLEP

        Han, Chengcheng,Kobakhidze, Archil,Liu, Ning,Wu, Lei,Yang, Bingfang Elsevier 2015 Nuclear Physics, Section B Vol.890 No.-

        <P><B>Abstract</B></P> <P>We investigate indirect constraints on the top partner within the minimal fermionic top partner model. By performing a global fit of the latest Higgs data, <SUB> B s </SUB> → <SUP> μ + </SUP> <SUP> μ − </SUP> measurements and the electroweak precision observables we find that the top partner with the mass up to 830 GeV is excluded at 2<I>σ</I> level. Our bound on the top partner mass is much stronger than the bounds obtained from the direct searches at the LHC. Under the current constraints the fine-tuning measure is less than 9% and the branching ratio of T → t Z is bounded between 14% and 25%. We also find that precise measurements of Higgs couplings at 240 GeV TLEP will constrain the top partner mass in multi-TeV region.</P>

      • KCI등재

        Preparation of Well-Dispersed Nanosilver in MIL-101(Cr) Using Double-Solvent Radiation Method for Catalysis

        SHUQUAN CHANG,Chengcheng Liu,Heliang Fu,Zheng Li,Xian Wu,Jundong Feng,Haiqian Zhang 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2018 NANO Vol.13 No.12

        In this study, a double-solvent radiation method is proposed to prepare silver nanoparticles in the pores of metal-organic framework MIL-101(Cr). The results reveal that well-dispersed silver nanoparticles with a diameter of about 2 nm were successfully fabricated in the cages of monodisperse octahedral MIL-101(Cr) with a particle size of about 400 nm. The structure of MIL-101(Cr) was not destroyed during the chemical treatment and irradiation. The resulting Ag/MIL-101 exhibits excellent catalytic performance for the reduction of 4-nitrophenol. This method can be extended to prepare other single or bimetallic components inside porous materials.

      • KCI등재

        Feature of vortex core gyration affected by Dzyaloshinskii-Moriya interaction

        Wei Maobin,Hu Yue,Wu Chengcheng,Sui Yingrui,Li Huanan 한국물리학회 2023 Current Applied Physics Vol.46 No.-

        The effects of Dzyaloshinskii-Moriya interaction (DMI) on vortex core gyration excited by an out-of-plane polarized current is investigated through micromagnetic simulation. The simulation results demonstrate that the DMI not only widens the current density range for gyration, but also greatly increases the frequency and velocity of gyration. On the premise that DMI is large enough and the vortex configurations can simultaneously be maintained, the stable gyration orbit changes from a circle, to a ring-like and to a bird-nest-like trajectory. Furthermore, by comparing the data of different-size nanodisks, it can be seen that the vortices in smaller and thinner disks can achieve higher velocity and larger amplitude gyration, while in larger and thicker disks, the magnetic vortices can obtain higher oscillation frequency. The conclusions in this research add to the potential applications of magnetic vortex in nano-oscillaors.

      • SCISCIESCOPUS
      • KCI등재

        Physiological responses and small RNAs changes in maize under nitrogen deficiency and resupply

        Zhenchao Yang,Zhengyan Wang,Chengcheng Yang,Zhao Yang,Hongquan Li,Yongjun Wu 한국유전학회 2019 Genes & Genomics Vol.41 No.10

        Background Maize is an important crop in the world, nitrogen stress severely reduces maize yield. Although a large number of studies have identified the expression changes of microRNAs (miRNAs) under N stress in several species, the miRNAs expression patterns of N-deficient plants under N resupply remain unclear. Objective The primary objective of this study was to identify miRNAs in response to nitrogen stress and understand relevant physiological changes in nitrogen-deficient maize after nitrogen resupply. Methods Physiological parameters were measured to study relevant physiological changes under different nitrogen conditions. Small RNA sequencing and qRT-PCR analysis were performed to understand the response of miRNAs under different nitrogen conditions. Results The content of chlorophyll, soluble protein and nitrate nitrogen decreased than CK by 0.52, 0.49 and 0.82 times after N deficiency treatment and increased than ND by 0.52, 1.36 and 0.65 times after N resupply, respectively. Conversely, the activity of superoxide dismutase (SOD) and peroxidase (POD) increased by 0.67 and 1.64 times than CK after N deficiency, respectively, and decreased by 0.09 and 0.35 times than ND after N resupply. A total of 226 known miRNAs were identified by sRNA sequencing; 106 miRNAs were differentially expressed between the control and N-deficient groups, and 103 were differentially expressed between the N-deficient and N-resupply groups (P < 0.05). Real-time quantitative PCR (qPCR) was used to further validate and analyze the expression of the identified miRNAs. A total of 1609 target genes were identified by target prediction, and some differentially expressed miRNAs were predicted to target transcription factors and functional proteins. Gene Ontology (GO) analysis was used to determine the biological function of these targets and revealed that some miRNAs, such as miR169, miR1214, miR2199, miR398, miR408 and miR827 might be involved in nitrogen metabolism regulation. Conclusion Our study comprehensively provides important information on miRNA functions and molecular mechanisms in response to N stress. These findings may assist to improve nitrogen availability in plants.

      • KCI등재

        Autophagy inhibition contributes to epigallocatechin-3-gallate-mediated apoptosis in papillary thyroid cancer cells

        Bu Ling,Zheng Tingting,Mao Chaoming,Fei Wu,Mou Xiao,Xu Chengcheng,Luo Xuan,Lu Qingyan,Dong Liyang,Wang Xuefeng 대한독성 유전단백체 학회 2021 Molecular & cellular toxicology Vol.17 No.4

        Background Epigallocatechin-3-gallate is a natural polyphenolic compound that induces apoptosis in papillary thyroid cancer cells. However, its underlying molecular mechanism was not completely clarified. Objectives The present study demonstrated the role of apoptosis and autophagy in EGCG-treated papillary thyroid cancer cells and the relationship between these processes. Results EGCG significantly suppressed the viability of TPC-1 papillary thyroid cancer cells at an IC50 of 17.2 μM. EGCG induced TPC-1 cell apoptosis and cell cycle arrest at S phase and downregulated the protein expression of cyclin A and cyclin-dependent kinase-2. EGCG decreased reactive oxygen species levels, upregulated Bax expression, downregulated Bcl-2 expression and increased cytochrome C levels in the cytosol. Treatment with EGCG also increased the levels of cleaved caspase 3, cleaved caspase 9 and cleaved poly(ADP-ribose) polymerase. EGCG induced an autophagic response via the upregulation of the autophagy-related protein LC3-II and suppression of the AKT/mTOR signalling pathway. Autophagy inhibition further enhanced EGCG-induced cell apoptosis and ROS suppression, which indicated that autophagy played a cytoprotective role in EGCG-treated TPC-1 cells. Conclusion Taken together, these results demonstrated that autophagy inhibition was beneficial to EGCG–mediated apoptosis in papillary thyroid cancer cells. Background Epigallocatechin-3-gallate is a natural polyphenolic compound that induces apoptosis in papillary thyroid cancer cells. However, its underlying molecular mechanism was not completely clarified. Objectives The present study demonstrated the role of apoptosis and autophagy in EGCG-treated papillary thyroid cancer cells and the relationship between these processes. Results EGCG significantly suppressed the viability of TPC-1 papillary thyroid cancer cells at an IC50 of 17.2 μM. EGCG induced TPC-1 cell apoptosis and cell cycle arrest at S phase and downregulated the protein expression of cyclin A and cyclin-dependent kinase-2. EGCG decreased reactive oxygen species levels, upregulated Bax expression, downregulated Bcl-2 expression and increased cytochrome C levels in the cytosol. Treatment with EGCG also increased the levels of cleaved caspase 3, cleaved caspase 9 and cleaved poly(ADP-ribose) polymerase. EGCG induced an autophagic response via the upregulation of the autophagy-related protein LC3-II and suppression of the AKT/mTOR signalling pathway. Autophagy inhibition further enhanced EGCG-induced cell apoptosis and ROS suppression, which indicated that autophagy played a cytoprotective role in EGCG-treated TPC-1 cells. Conclusion Taken together, these results demonstrated that autophagy inhibition was beneficial to EGCG–mediated apoptosis in papillary thyroid cancer cells.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼