RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Enhanced mass balance Tafel slope model for computer based FEM computation of corrosion rate of steel reinforced concrete coupled with CO_2 transport

        Raja Rizwan Hussain 사단법인 한국계산역학회 2011 Computers and Concrete, An International Journal Vol.8 No.2

        This research paper aims at computer based modeling of carbonation induced corrosion under extreme conditions and its experimental verification by incorporating enhanced electrochemical and mass balance equations based on thermo-hygro physics with strong coupling of mass transport and equilibrium in micro-pore structure of carbonated concrete for which the previous research data is limited. In this paper the carbonation induced electrochemical corrosion model is developed and coupled with carbon dioxide transport computational model by the use of a concrete durability computer based model DuCOM developed by our research group at concrete laboratory in the University of Tokyo and its reliability is checked in the light of experiment results of carbonation induced corrosion mass loss obtained in this research. The comparison of model analysis and experiment results shows a fair agreement. The carbonation induced corrosion model computation reasonably predicts the quantitative behavior of corrosion rate for normal air dry relative humidity conditions. The computational model developed also shows fair qualitative corrosion rate simulation and analysis for various pH levels and coupled environmental actions of chloride and carbonation. Detailed verification of the model for the quantitative carbonation induced corrosion rate computation under varying relative conditions, different pH levels and combined effects of carbonation and chloride attack remain as scope for future research.

      • KCI등재후보

        Enhanced Classical Tofel Diagram Model for Corrosion of Steel in Chloride Contaminated Concrete and the Experimental Non Linear Effect of Temperature

        Raja Rizwan Hussain 한국콘크리트학회 2010 International Journal of Concrete Structures and M Vol.4 No.2

        The chloride ion attack on the passive iron oxide layer of reinforcement steel embedded in concrete under variable temperature environment is influenced by several parameters and some of them still need to be further investigated in more detail. Different school of thoughts exist between past researchers and the data is limited in the high temperature and high chloride concentration range which is necessary with regards to setting boundary conditions for enhancement of tafel diagram model presented in this research. The objective of this paper is to investigate the detrimental coupled effects of chloride and temperature on corrosion of reinforced concrete structures in the high range by incorporating classical Tafel diagram chloride induced corrosion model and laboratory controlled experimental non linear effect of temperature on corrosion of rebar embedded in concrete.

      • SCIESCOPUSKCI등재

        Enhanced Classical Tafel Diagram Model for Corrosion of Steel in Chloride Contaminated Concrete and the Experimental Non-Linear Effect of Temperature

        Raja Rizwan Hussain 한국콘크리트학회 2010 International Journal of Concrete Structures and M Vol.4 No.2

        The chloride ion attack on the passive iron oxide layer of reinforcement steel embedded in concrete under variable temperature environment is influenced by several parameters and some of them still need to be further investigated in more detail. Different school of thoughts exist between past researchers and the data is limited in the high temperature and high chloride concentration range which is necessary with regards to setting boundary conditions for enhancement of tafel diagram model presented in this research. The objective of this paper is to investigate the detrimental coupled effects of chloride and temperature on corrosion of reinforced concrete structures in the high range by incorporating classical Tafel diagram chloride induced corrosion model and laboratory controlled experimental non-linear effect of temperature on corrosion of rebar embedded in concrete.

      • KCI등재

        Investigation of Volumetric Effect of Coarse Aggregate on Corroding Steel Reinforcement at the Interfacial Transition Zone of Concrete

        Raja Rizwan Hussain,Tetsuya Ishida 대한토목학회 2011 KSCE JOURNAL OF CIVIL ENGINEERING Vol.15 No.1

        Corrosion is an electrochemical process which requires electrolyte for the occurrence of corrosion reaction. Therefore it is necessary to calculate the effective corrosion rate with reference to the saturated area of concrete only when it comes to corrosion of steel reinforcement embedded in concrete. Theoretically and numerically the saturated area depends on the capillary zone porosity,gel zone porosity and their respective degree of saturation in the aggregate free volume of concrete which is a heterogeneous material in nature. This makes it important to deeply understand the effect of aggregate on corrosion in concrete. Investigation was carried out to find the effect of coarse aggregate volume on the corrosion rate and potential of reinforcement steel in concrete. The initiative for this research came from the observation that the interfacial transition zone around the steel bar in concrete is surrounded primarily by paste only and hence the coarse aggregate volume should not influence the corrosion rate principally. Also there are chances that some fine aggregate could be present in the vicinity of steel bar surface being finer than coarse aggregate which may affect the corrosion rate. The previous research data in this field was found to be limited and has a difference of opinion. Therefore, these factors have been investigated in this research. Prismatic concrete and mortar specimens were cast and their corrosion potential values were compared with each other to find the effect of the volume of coarse aggregate on corrosion. The experiment results showed that the effect of the volume of coarse aggregate on corrosion potential is not significant since the area around the steel bar especially in the case of deformed steel is mostly surrounded by paste only. The corrosion potential values obtained in the case of mortar and concrete specimens showed same averaged magnitude. This fact was further strengthened by measuring the corrosion mass loss and resulting corrosion rate in the two cases. Furthermore, in the light of experiment results obtained in this research, the numerical FEM model DuCOM developed by our research group at the University of Tokyo, Japan incorporating the effect of aggregate on corrosion rate and potential of corroding steel in concrete undertaken in the past has been successfully enhanced and verified in this research.

      • SCIESCOPUSKCI등재

        Enhanced Classical Tafel Diagram Model for Corrosion of Steel in Chloride Contaminated Concrete and the Experimental Non-Linear Effect of Temperature

        Hussain, Raja Rizwan Korea Concrete Institute 2010 International Journal of Concrete Structures and M Vol.4 No.2

        The chloride ion attack on the passive iron oxide layer of reinforcement steel embedded in concrete under variable temperature environment is influenced by several parameters and some of them still need to be further investigated in more detail. Different school of thoughts exist between past researchers and the data is limited in the high temperature and high chloride concentration range which is necessary with regards to setting boundary conditions for enhancement of tafel diagram model presented in this research. The objective of this paper is to investigate the detrimental coupled effects of chloride and temperature on corrosion of reinforced concrete structures in the high range by incorporating classical Tafel diagram chloride induced corrosion model and laboratory controlled experimental non-linear effect of temperature on corrosion of rebar embedded in concrete.

      • KCI등재

        Computer based FEM stabilization of oxygen transport model for material and energy simulation in corroding reinforced concrete

        Raja Rizwan Hussain 사단법인 한국계산역학회 2013 Computers and Concrete, An International Journal Vol.12 No.5

        This paper unveils a new computer based stabilization methodology for automated modeling analysis and its experimental verification for corrosion in reinforced concrete structures under the effect of varying oxygen concentration. Various corrosion cells with different concrete compositions under four different environmental conditions (air dry, submerged, 95% R.H and alternate wetting-drying) have been investigated under controlled laboratory conditions.The results of these laboratory tests were utilized with an automated computer-aided simulation model. This model based on mass and energy stabilization through the porous media for the corrosion processwas coupled with modified stabilization methodology. By this coupling, it was possible to predict, maintain and transfer the influence of oxygen concentration on the corrosion rate of the reinforcement in concrete under various defined conditions satisfactorily. The variation in oxygen concentration available for corrosion reaction has been taken into account simulating the actual field conditions such as by varying concrete cover depth, relative humidity, water-cement ratio etc. The modeling task has been incorporated by the use of a computer based durability model as a finite element computational approach for stabilizing the effect of oxygen on corrosion of reinforced concrete structures.

      • KCI등재

        Computer based estimation of backbone curves for hysteretic Response of reinforced concrete columns under static cyclic lateral loads

        M. Rizwan,M.T.A. Chaudhary,M. Ilyas,Raja Rizwan Hussain,T.R. Stacey 사단법인 한국계산역학회 2014 Computers and Concrete, An International Journal Vol.14 No.2

        Cyclic test of the columns is of practical relevance to the performance of compression members during an earthquake loading. The strength, ductility and energy absorption capabilities of reinforced concrete (RC) columns subjected to cyclic loading have been estimated by many researchers. These characteristics are not normally inherent in plain concrete but can be achieved by effectively confining columns through transverse reinforcement. An extensive experimental program, in which performance of four RC columns detailed according to provisions of ACI-318-08 was studied in contrast with that of four columns confined by a new proposed technique. This paper presents performance of columns reinforced by standard detailing and cast with 25 and 32 MPa concrete. The experimentally achieved load-displacement hysteresis and backbone curves of two columns are presented. The two approaches which work in conjunction with Response 2000 have been suggested to draw analytical back bone curves of RC columns. The experimental and analytical backbone curves are found in good agreement. This investigation gives a detail insight of the response of RC columns subjected to cyclic loads during their service life. The suggested analytical procedures will be available to the engineers involved in design to appraise the capacity of RC columns.

      • KCI등재

        Implication of rubber- steel bearing nonlinear models on soft storey structures

        A.B.M. Saiful Islam,Raja Rizwan Hussain,Mohammed Zamin Jumaat,Kh Mahfuz ud Darain 사단법인 한국계산역학회 2014 Computers and Concrete, An International Journal Vol.13 No.5

        Soft storey buildings are characterised by having a storey that has a large amount of open space. This soft storey creates a major weak point during an earthquake. As the soft stories are typically associated with retail spaces and parking garages, they are often on the lower levels of tall building structures. Thus, when these stories collapse, the entire building can also collapse, causing serious structural damage that may render the structure completely unusable. The use of special soft storey is predominant in the tall building structures constructed by several local developers, making the issue important for local building structures. In this study, the effect of the incorporation of an isolator on the seismic behaviour of tall building structures is examined. The structures are subjected to earthquakes typical of the local city, and the isolator is incorporated with the appropriate isolator time period and damping ratio. A FEM-based computational relationship is proposed to increase the storey height so as to incorporate the isolator with the same time period and damping ratio for both a lead rubber bearing (LRB) and high-damping rubber bearing (HDRB). The study demonstrates that the values of the FEM-based structural design parameters are greatly reduced when the isolator is used. It is more beneficial to incorporate a LRB than a HDRB.

      • KCI등재

        Effects of Temperature and Stress on Creep Behavior of PP and Hybrid Fiber Reinforced Reactive Powder Concrete

        Xiaomeng Hou,Muhammad Abid,Wenzhong Zheng,Raja Rizwan Hussain 한국콘크리트학회 2019 International Journal of Concrete Structures and M Vol.13 No.6

        Reactive powder concrete (RPC) is an advanced cementitious material with ultra-high strength, remarkable durabil-ity and excellent toughness. However, temperature dependent creep is a major concern as very little work has been reported in the literature. Therefore, systematic investigations are still missing in state of the art. This paper focuses on the impact of Polypropylene (PP) and hybrid (steel and PP) fibers on creep behavior of RPC at elevated tempera-ture. Temperature-dependent creep is further characterized into free thermal strain (FTS), short-term creep (STC) and transient strain (TS), based on different thermo-mechanical regimes. Varying heating and loading schemes were considered such as steady-state and transient thermo-mechanical conditions. The target temperatures considered for steady-state thermal conditions and transient case are 120, 300, 500, 700 and 900 °C. Compressive strength was considered up to 60% load ratio of ambient and temperature dependency. The result shows that STC increases with increasing stress level and higher target temperature. The increase in STC becomes obvious above the transition stage of quartz aggregate. Furthermore, HRPC have significantly higher STC than PRPC and other traditional types of concretes. The evolution of FTS and TS was quite slow below 250 °C. However, at high temperature significant increase in FTS and TS were observed. Furthermore, increasing stress level and the addition of steel fibers results in high TS. Overall, the performance of PP fiber was better than the hybrid fibers on the creep behaviour of RPC. Finally, constitutive relationships were proposed for FTS, STC and TS, which will be used as input data in numerical models of fire resistance calculations.

      • KCI등재

        Incorporation preference for rubber-steel bearing isolation in retrofitting existing multi storied building

        A.B.M. Saiful Islam,University of MalayaMohd Zamin Jumaat,Raja Rizwan Hussain,Md. Akter Hosen,Md. Nazmul Huda 사단법인 한국계산역학회 2015 Computers and Concrete, An International Journal Vol.16 No.4

        Traditionally, multi-story buildings are designed to provide stiffer structural support to withstand lateral earthquake loading. Introducing flexible elements at the base of a structure and providing sufficient damping is an alternative way to mitigate seismic hazards. These features can be achieved with a device known as an isolator. This paper covers the design of base isolators for multi-story buildings in medium-risk seismicity regions and evaluates the structural responses of such isolators. The well-known tower building for police personnel built in Dhaka, Bangladesh by the Public Works Department (PWD) has been used as a case study to justify the viability of incorporating base isolators. The objective of this research was to establish a simplified model of the building that can be effectively used for dynamic analysis, to evaluate the structural status, and to suggest an alternative option to handle the lateral seismic load. A finite element model was incorporated to understand the structural responses. Rubber-steel bearing (RSB) isolators such as Lead rubber bearing (LRB) and high damping rubber bearing (HDRB) were used in the model to insert an isolator link element in the structural base. The nonlinearities of rubber-steel bearings were considered in detail. Linear static, linear dynamic, and nonlinear dynamic analyses were performed for both fixed-based (FB) and base isolated (BI) buildings considering the earthquake accelerograms, histories, and response spectra of the geological sites. Both the time-domain and frequency-domain approaches were used for dynamic solutions. The results indicated that for existing multi-story buildings, RSB diminishes the muscular amount of structural response compared to conventional non-isolated structures. The device also allows for higher horizontal displacement and greater structural flexibility. The suggested isolation technique is able to mitigate the structural hazard under even strong earthquake vulnerability.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼