RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Factors governing dynamic response of steel-foam ceramic protected RC slabs under blast loads

        Xiaomeng Hou,Kunyu Liu,Shaojun Cao,Qin Rong 국제구조공학회 2019 Steel and Composite Structures, An International J Vol.33 No.3

        Foam ceramic materials contribute to the explosion effect weakening on concrete structures, due to the corresponding excellent energy absorption ability. The blast resistance of concrete members could be improved through steel-foam ceramics as protective cladding layers. An approach for the modeling of dynamic response of steel-foam ceramic protected reinforced concrete (Steel-FC-RC) slabs under blast loading was presented with the LS-DYNA software. The orthogonal analysis (five factors with five levels) under three degrees of blast loads was conducted. The influence rankings and trend laws were further analyzed. The dynamic displacement of the slab bottom was significantly reduced by increasing the thickness of steel plate, foam ceramic and RC slab, while the displacement decreased slightly as the steel yield strength and the compressive strength of concrete increased. However, the optimized efficiency of blast resistance decreases with factors increase to higher level. Moreover, an efficient design method was reported based on the orthogonal analysis.

      • KCI등재

        Effects of Temperature and Stress on Creep Behavior of PP and Hybrid Fiber Reinforced Reactive Powder Concrete

        Xiaomeng Hou,Muhammad Abid,Wenzhong Zheng,Raja Rizwan Hussain 한국콘크리트학회 2019 International Journal of Concrete Structures and M Vol.13 No.6

        Reactive powder concrete (RPC) is an advanced cementitious material with ultra-high strength, remarkable durabil-ity and excellent toughness. However, temperature dependent creep is a major concern as very little work has been reported in the literature. Therefore, systematic investigations are still missing in state of the art. This paper focuses on the impact of Polypropylene (PP) and hybrid (steel and PP) fibers on creep behavior of RPC at elevated tempera-ture. Temperature-dependent creep is further characterized into free thermal strain (FTS), short-term creep (STC) and transient strain (TS), based on different thermo-mechanical regimes. Varying heating and loading schemes were considered such as steady-state and transient thermo-mechanical conditions. The target temperatures considered for steady-state thermal conditions and transient case are 120, 300, 500, 700 and 900 °C. Compressive strength was considered up to 60% load ratio of ambient and temperature dependency. The result shows that STC increases with increasing stress level and higher target temperature. The increase in STC becomes obvious above the transition stage of quartz aggregate. Furthermore, HRPC have significantly higher STC than PRPC and other traditional types of concretes. The evolution of FTS and TS was quite slow below 250 °C. However, at high temperature significant increase in FTS and TS were observed. Furthermore, increasing stress level and the addition of steel fibers results in high TS. Overall, the performance of PP fiber was better than the hybrid fibers on the creep behaviour of RPC. Finally, constitutive relationships were proposed for FTS, STC and TS, which will be used as input data in numerical models of fire resistance calculations.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼