RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Identification of adhesion-associated extracellular matrix component thrombospondin 3 as a prognostic signature for clear cell renal cell carcinoma

        Xiangling Chen,Jiatian Lin,Min Chen,Qiaoling Chen,Zhiming Cai,Aifa Tang 대한비뇨의학회 2022 Investigative and Clinical Urology Vol.63 No.1

        Purpose: Clear cell renal cell carcinoma (ccRCC) is a highly aggressive disease, and approximately 30% of patients are diagnosed at the metastatic stage. Even with targeted therapies, the prognosis of advanced ccRCC is poor. The aim of this study was to investigate clinical prognosis signatures by analyzing the ccRCC datasets in The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the function of thrombospondin 3 (THBS3) in ccRCC. Materials and Methods: We analyzed the ccRCC datasets in TCGA and CPTAC to search for extracellular matrix (ECM)-related and adhesion-associated genes, and conducted overall survival, Cox, and receiver operating characteristic analyses. We also performed CCK8, colony formation, and transwell assays to compared the proliferation and migration ability of THBS3 knockout cells with those of cells without THBS3 knockout. Results: Comprehensive bioinformatics analysis revealed that THBS3 is a novel candidate oncogene that is overexpressed in ccRCC tumor tissue and that its elevated expression indicates poor prognosis. Our study also showed that knockdown of THBS3 inhibits proliferation, colony formation, and migration of ccRCC cells. Conclusions: In summary, our data have revealed that THBS3 is upregulated in cancer tissues and could be used as a novel prognostic marker for ccRCC. Our findings thus offer theoretical support with bioinformatics analyses to the study of ECM and adhesion proteins in ccRCC, which may provide a new perspective for the clinical management of ccRCC.

      • KCI등재
      • KCI등재

        Sequential anti-inflammatory and osteogenic effects of a dual drug delivery scaffold loaded with parthenolide and naringin in periodontitis

        Rui Chen,Mengting Wang,Qiaoling Qi,Yanli Tang,Zhenzhao Guo,Shuai Wu,Qiyan Li 대한치주과학회 2023 Journal of Periodontal & Implant Science Vol.53 No.1

        Purpose: Our pilot study showed that a 3-dimensional dual drug delivery scaffold (DDDS) loaded with Chinese herbs significantly increased the regenerated bone volume fraction. This study aimed to confirm the synergistic anti-inflammatory and osteogenic preclinical effects of this system. Methods: The targets and pathways of parthenolide and naringin were predicted. Three cell models were used to assess the anti-inflammatory effects of parthenolide and the osteogenic effects of naringin. First, the distance between the cementoenamel junction and alveolar bone crest (CEJ-ABC) and the bone mineral density (BMD) of surgical defects were measured in a rat model of periodontitis with periodontal fenestration defects. Additionally, the mRNA expression levels of matrix metallopeptidase 9 (MMP9) and alkaline phosphatase (ALP) were measured. Furthermore, the number of inflammatory cells and osteoclasts, as well as the protein expression levels of tumor necrosis factor-alpha (TNF-α) and levels of ALP were determined. Results: Target prediction suggested prostaglandin peroxidase synthase (PTGS2) as a potential target of parthenolide, while cytochrome P450 family 19 subfamily A1 (CYP19A1) and taste 2 receptor member 31 (TAS2R31) were potential targets of naringin. Parthenolide mainly targeted inflammation-related pathways, while naringin participated in steroid hormone synthesis and taste transduction. In vitro experiments revealed significant antiinflammatory effects of parthenolide on RAW264.7 cells, and significant osteogenic effects of naringin on bone marrow mesenchymal stem cells and MC3T3-E1 cells. DDDS loaded with parthenolide and naringin decreased the CEJ-ABC distance and increased BMD and ALP levels in a time-dependent manner. Inflammation was significantly alleviated after 14 days of DDDS treatment. Additionally, after 56 days, the DDDS group exhibited the highest BMD and ALP levels. Conclusions: DDDS loaded with parthenolide and naringin in a rat model achieved significant synergistic anti-inflammatory and osteogenic effects, providing powerful preclinical evidence.

      • KCI등재

        A Mild Strategy to Strengthen Three Dimensional Graphene Aerogel for Supporting Sulfur as a Free‐standing Cathode in Lithium–Sulfur Batteries

        Yinglin Yan,Haichao Qin,Yiqi Wei,Rong Yang,Yunhua Xu,Liping Chen,Qiaole Li,Mangmang Shi 대한화학회 2018 Bulletin of the Korean Chemical Society Vol.39 No.5

        Recently, three dimensional graphene aerogel (3DGA) supported sulfur microparticles was used as a cathode material for lithium?sulfur batteries, which was considered as one of the most promising next generation rechargeable batteries due to its ultra?high theoretical specific capacity (1675 mAh/g). However, the mechanical strength of 3DGA remains an issue for further application. Herein, a strengthened 3DGA (S3DGA) was achieved by soaking in a low concentration ammonia solution at a relative low temperature. Then the S3DGA loaded sulfur (S3DGA?S) was cut into a round piece and directly used as a cathode without additional binders or conductive additives in Li?S batteries. The mechanical strength, microstructure, and electrochemical properties were investigated by compare with a 3DGA prepared without strengthen. The S3DGA?S presented good mechanical strength, excellent capacity retention, and lower electrochemical impedance.

      • KCI등재

        Flow Velocity Deviation of Spinning Solution Under Multi-field Coupling

        Zhiming Zhang,Da Hong,Xinyu Huang,Kang Liu,Qiao Xu,Zhen Chen,Qiaoling Ji,Changjin Ke 한국섬유공학회 2023 Fibers and polymers Vol.24 No.10

        Rotating jet spinning uses the centrifugal force generated by the high-speed rotation of the motor to keep the spinning solution ejected from the nozzle to form nanofibers. At present, the research work on rotating jet spinning mainly involves the materials, properties and applications of fibers, parameter influence and jet trajectory, while there are few studies on the optimization of spinning core components. In this paper, by analyzing the force and flow state of spinning solution in the flow channel of spinning nozzle, it is found that the maximum velocity region of spinning solution will be offset. The reason for this phenomenon is that the spinning solution is subjected to Coriolis force in the rotating system, resulting in the secondary flow of solution. The relationship between nozzle parameters, solution parameters as well as process parameters, and the outlet velocity of solution was sought, and the structure of spinning nozzle was optimized. The factors affecting velocity offset in straight-tube nozzles and bent-tube nozzles are simulated. High-speed centrifugal spinning experiments were conducted using both unoptimized and optimized nozzles.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼