RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Temperature change around a LNG storage predicted by a three-dimensional indirect BEM with a hybrid integration scheme

        Jingyu Shi,Baotang Shen 한국자원공학회 2018 Geosystem engineering Vol.21 No.6

        We employ a three-dimensional indirect boundary element method (BEM) to simulate temperature change around an underground liquefied natural gas storage cavern. The indirect BEM (IBEM) uses fictitious heat source strength on boundary elements as basic variables which are solved from equations of boundary conditions and then used to compute the temperature change at other points in the considered problem domain. The IBEM requires evaluation of singular integration for temperature change due to heat conduction from a constant heat source on a planar (triangular) region. The singularity can be eliminated by a semi-analytical integration scheme. However, it is found that the semi-analytical integration scheme yields sharp temperature gradient for points close to vertices of triangle. This affects the accuracy of heat flux, if they are evaluated by finite difference method at these points. This difficulty can be overcome by a combination of using a direct numerical integration for these points and the semi-analytical scheme for other points distance away from the vertices. The IBEM and the hybrid integration scheme have been verified with an analytic solution and then used to the application of the underground storage.

      • KCI등재

        A Variable Working Condition Rolling Bearing Fault Diagnosis Method Based on Improved Triplet Loss Algorithm

        Ke Zhang,Jingyu Wang,Huaitao Shi,Xiaochen Zhang 제어·로봇·시스템학회 2023 International Journal of Control, Automation, and Vol.21 No.4

        In the case of large differences in working conditions and large noise effects, how to maintain the similarity of the same fault type is a major difficulty in the rolling bearing fault diagnosis. In addition, variable working conditions will cause the signal take place the local modulation, which makes the signal more susceptible to noise. Most of classification algorithms are difficult to eliminate the influence of variable working conditions on diagnostic results. To solve the problem, a fault diagnosis method is proposed which takes into account the change of speed and load in this paper. The method first applies the synchronous compression wavelet transformation to pre-process the data to reduce the effect of noise on feature extraction. Then, the Triplet loss function is improved and combined with the Hard Samples Mining theory to proposes a new loss function called Quadru-Hard loss to solve the problem of difficult classification under variable working conditions. Based on the experimental analysis of two sets of bearing fault data under variable speeds and variable loads, the results show that the method has a highly accuracy in fault diagnosis under two variable conditions.

      • KCI등재

        Component Prototyping for the China Spallation Neutron Source Project

        Jie Wei,Yanwei Chen,Yunlong Chi,Changdong Deng,Haiyi Dong,Shinian Fu,Wei He,Kaixi Huang,Wen Kang,Jian Li,Huafu Ouyang,Huamin Qu,Caitu Shi,Hong Sun,Jingyu Tang,Juzhou Tao,Sheng Wang,Zhongxiong Xu,Xueju 한국물리학회 2009 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.54 No.5

        The China Spallation Neutron Source (CSNS) complex consists of an H- linear accelerator, a rapid cycling synchrotron accelerating the beam to 1.6 GeV, a solid tungsten target station and instruments for spallation neutron applications. The facility operates at a 25-Hz repetition rate with an initial design beam power of 120 kW and is upgradeable to 500 kW. The primary challenge is to build a robust and reliable user-friendly facility with upgrade potential at a fraction of the \world standard" cost. Success of the project relies on the results of prototyping research & development (R&D) of key technical systems and components. This paper discusses the prototyping experiences of the past two and a half years. The China Spallation Neutron Source (CSNS) complex consists of an H- linear accelerator, a rapid cycling synchrotron accelerating the beam to 1.6 GeV, a solid tungsten target station and instruments for spallation neutron applications. The facility operates at a 25-Hz repetition rate with an initial design beam power of 120 kW and is upgradeable to 500 kW. The primary challenge is to build a robust and reliable user-friendly facility with upgrade potential at a fraction of the \world standard" cost. Success of the project relies on the results of prototyping research & development (R&D) of key technical systems and components. This paper discusses the prototyping experiences of the past two and a half years.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼