RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Fatty Acid Synthesis Pathway Genetic Variants and Clinical Outcome of Non-Small Cell Lung Cancer Patients after Surgery

        Jin, Xin,Zhang, Ke-Jin,Guo, Xu,Myers, Ronald,Ye, Zhong,Zhang, Zhi-Pei,Li, Xiao-Fei,Yang, Hu-Shan,Xing, Jin-Liang Asian Pacific Journal of Cancer Prevention 2014 Asian Pacific journal of cancer prevention Vol.15 No.17

        Over-expression of de novo lipogenesis (DNL) genes is associated with the prognosis of various types of cancers. However, the effects of single nucleotide polymorphisms (SNPs) in these genes on recurrence and survival of non-small cell lung cancer (NSCLC) patients after surgery are still unknown. In this study, a total of 500 NSCLC patients who underwent surgery treatment were included. Eight SNPs in 3 genes (ACACA, FASN and ACLY) of the DNL pathway were examined using the Sequenom iPLEX genotyping system. Multivariate Cox proportional hazards regression and Kaplan-Meier curves were used to analyze the association of SNPs with patient survival and tumour recurrence. We found that two SNPs in the FASN gene were significantly associated with the recurrence of NSCLC. SNP rs4246444 had a significant association with lung cancer recurrence under additive model (hazard ratio [HR], 0.82; 95% confidence interval [95%CI], 0.67-1.00; p=0.05). Under the dominant model, rs4485435 exhibited a significant association with recurrence (HR, 0.75; 95%CI, 0.56-1.01; p=0.05). Additionally, SNP rs9912300 in ACLY gene was significantly associated with overall survival in lung cancer patients (HR, 1.41; 95%CI, 1.02-1.94, p=0.04) under the dominant model. Further cumulative effect analysis showed moderate dose-dependent effects of unfavorable SNPs on both survival and recurrence. Our data suggest that the SNPs in DNL genes may serve as independent prognostic markers for NSCLC patients after surgery.

      • Ganoderma Lucidum Polysaccharides Target a Fas/Caspase Dependent Pathway to Induce Apoptosis in Human Colon Cancer Cells

        Liang, Zengenni,Guo, Yu-Tong,Yi, You-Jin,Wang, Ren-Cai,Hu, Qiu-Long,Xiong, Xing-Yao Asian Pacific Journal of Cancer Prevention 2014 Asian Pacific journal of cancer prevention Vol.15 No.9

        Ganoderma lucidum polysaccharides (GLP) extracted from Ganoderma lucidum have been shown to induce cell death in some kinds of cancer cells. This study investigated the cytotoxic and apoptotic effect of GLP on HCT-116 human colon cancer cells and the molecular mechanisms involved. Cell proliferation, cell migration, lactate dehydrogenase (LDH) levels and intracellular free calcium levels ($[Ca^{2+}]i$) were determined by MTT, wound-healing, LDH release and fluorescence assays, respectively. Cell apoptosis was observed by scanning and transmission electron microscopy. For the mechanism studies, caspase-8 activation, and Fas and caspase-3 expression were evaluated. Treatment of HCT-116 cells with various concentrations of GLP (0.625-5 mg/mL) resulted in a significant decrease in cell viability (P< 0.01). This study showed that the antitumor activity of GLP was related to cell migration inhibition, cell morphology changes, intracellular $Ca^{2+}$ elevation and LDH release. Also, increase in the levels of caspase-8 activity was involved in GLP-induced apoptosis. Western blotting indicated that Fas and caspase-3 protein expression was up-regulated after exposure to GLP. This investigation demonstrated for the first time that GLP shows prominent anticancer activities against the HCT-116 human colon cancer cell line through triggering intracellular calcium release and the death receptor pathway.

      • KCI등재

        A Proteomic Analysis of Leaf Responses to Enhanced Ultraviolet-B Radiation in Two Rice (Oryza sativa L.) Cultivars Differing in UV Sensitivity

        Xing-Chun Wu,Chang-Xun Fang,Jin-Yang Chen,Qing-Shui Wang,Ting Chen,Wen-Xiong Lin,Zhong-Liang Huang 한국식물학회 2011 Journal of Plant Biology Vol.54 No.4

        To determine the proteomic response to UV irradiation, two cultivars, i.e., Lemont (UV tolerant) and Dular (UV sensitive), were exposed to natural and enhanced ultraviolet-B (UV-B) irradiation for 1, 7, and 14 days, and two-dimensional gel electrophoresis in combination with mass spectrometry (MS) and bioinformatics were used to compare the different proteomic responses in the leaves of the two cultivars. Thirty-nine proteins were up- or downregulated following the UV-B treatments. Among them, 30 increased or decreased more than 1.5-fold in abundance. They were further tested by using matrix-assisted laser desorption/ionization time of flight MS and performed a database search. Twentyfour proteins were thus identified. These identified proteins were mostly upregulated in Lemont, whereas only 14 of them upregulated in Dular. Nine proteins involved in glycometabolism and fatty acid metabolisms, signal transduction, and protein synthesis and folding in Dular were not changed. These results suggest that there was a complex regulative mechanism on the proteomes in rice leaves upon UV-B exposure.

      • SCISCIESCOPUS

        Inhibition of DNA repair protein RAD51 affects porcine preimplantation embryo development

        Jin, Zhe-Long,Shen, Xing-Hui,Shuang, Liang,Kwon, Jeong-woo,Seong, Min-Jeong,Kim, Nam-Hyung BioScientifica 2019 Reproduction Vol.157 No.3

        <P>Homologous recombination (HR) plays a critical role in facilitating replication fork progression when the polymerase complex encounters a blocking DNA lesion, and it also serves as the primary mechanism for error-free DNA repair of double-stranded breaks. DNA repair protein RAD51 homolog 1 (RAD51) plays a central role in HR. However, the role of RAD51 during porcine early embryo development is unknown. In the present study, we examined whether RAD51 is involved in the regulation of early embryonic development of porcine parthenotes. We found that inhibition of RAD51 delayed cleavage and ceased development before the blastocyst stage. Disrupting RAD51 activity with RNAi or an inhibitor induces sustained DNA damage, as demonstrated by the formation of distinct γH2AX foci in nuclei of four-cell embryos. Inhibiting RAD51 triggers a DNA damage checkpoint by activating the ataxia telangiectasia mutated (ATM)-p53-p21 pathway. Furthermore, RAD51 inhibition caused apoptosis, reactive oxygen species accumulation, abnormal mitochondrial distribution and decreased pluripotent gene expression in blastocysts. Thus, our results indicate that RAD51 is required for proper porcine parthenogenetic activation (PA) embryo development.</P>

      • Dynamic Profiles of Ubiquitination and Autophagy Associated with Paternal Mitochondria Degradation during Mouse Postfertilization Development

        Xing-Wei Liang,Yong-Xun Jin,Ga-Young An,Seul-Ki Lee,Jung-Woo Kwon,Xiang-Shun Cui,Nam-Hyung Kim 한국동물번식학회 2012 Reproductive & Developmental Biology(Supplement) Vol.36 No.2s

        It is well established that mitochondrial genome is strictly maternally inherited in mammalian, despite the fact that paternal mitochondria enter into oocyte during fertilization. To date, although some mechanisms have been extrapolated to interpret the elimination of paternal mitochondria, the exact mechanism still is unclear. Recent studies suggest that autophagy process and the ubiquitin-mediated degradation pathway may be involved in elimination of paternal mitochondria. However, the dynamic profiles of autophagy and ubiquitination associated with paternal mitochondria degradation have not been determined in mouse model. Through immunostaining with specific antibody LC3 and Ubiquitin and confocal microscopy, we investigated the dynamic profiles of LC3 and Ubiquitin signals in mouse embryos during preimplantation development. In addition, embryos were stained with MitoTracker Red for tracking the degradation process of paternal mitochondria. Our results showed that paternal mitochondria gradually degraded during postfertilization development, and sporadic paternal mitochondria were found at least in 16 cell embryos. LC3 and Ubiquitin signals appeared in the midpiece of sperm at 3 h postfertilization, and they were strictly colocalizated with paternal mitochondria from zygote to 2 cell embryo. Nevertheless, the colocalization became loose at 4 cell embryos, and gradually disappeared beyond 4 cell embryos. Our results confirmed that autophagy process and the ubiquitin-mediated degradation pathway may take part in the postfertilization remove of paternal mitochondria.

      • Lectin from Agrocybe aegerita as a Glycophenotype Probe for Evaluation of Progression and Survival in Colorectal Cancer

        Liang, Yi,Chen, Hua,Zhang, Han-Bin,Jin, Yan-Xia,Guo, Hong-Qiang,Chen, Xing-Gui,Sun, Hui Asian Pacific Journal of Cancer Prevention 2014 Asian Pacific journal of cancer prevention Vol.15 No.14

        Background: Agrocybe aegerita Lectin (AAL) has been identified to have high affinity for sulfated and ${\alpha}2$-3-linked sialic acid glycoconjugates, especially the sulfated and sialyl TF (Thomsen-Friedenreich) disaccharide. This study was conducted to investigate the clinicopathological and prognostic value of AAL in identifying aberrant glycosylation in colorectal cancer (CRC). Materials and Methods: Glycoconjugate expression in 59 CRC tissues were detected using AAL-histochemistry. Clinicopathological associates of expression were analyzed with chisquare test or Fisher's exact test. Relationships between expression and the various clinicopathological parameters was estimated using Kaplan-Meier analysis and Cox regression models. Results: AAL specific glycoconjugate expression was significantly higher in tumor than corresponding normal tissues (66.1% and 46.1%, respectively, p=0.037), correlating with depth of invasion (p=0.015) and TNM stage (p=0.024). Patients with lower expression levels had a significantly higher survival rate than those with higher expression (p=0.046 by log rank test and p=0.047 by Breslow test for overall survival; p=0.054 by log rank test and P=0.038 by Breslow test for progress free survival). A marginally significant association was found between AAL specific glycoconjugate expression and overall survival by univariate Cox regression analysis (p=0.059). Conclusions: Lower AAL specific glycoconjugate expression is a significant favorable prognostic factor for overall and progress free survival in CRC. This is the first report about the employment of AAL for histochemical analysis of cancer tissues. The binding characteristics of AAL means it has potential to become a powerful tool for the glycan investigation and clinical application.

      • SCOPUSKCI등재

        DFT Studies on Two Novel Explosives Based on the Guanidine-Fused Bicyclic Structure

        Jin, Xing-Hui,Hu, Bing-Cheng,Jia, Huan-Qing,Liu, Zu-Liang,Lu, Chun-Xu Korean Chemical Society 2014 Bulletin of the Korean Chemical Society Vol.35 No.4

        Density functional theory (DFT) calculations at the B3LYP/6-31G(d,p) theoretical level were performed for two novel explosives (compounds B and C) based on the guanidine-fused bicyclic skeleton $C_4N_6H_8$ (A). The heats of formation (HOFs) were calculated via isodesmic reaction. The detonation properties were evaluated by using the Kamlet-Jacobs equations. The bond dissociation energies (BDEs) for the thermolysis initiation bond were also analyzed to investigate the thermal stability. The results show that the compounds have high positive HOF values (B, 1064.68 $kJ{\cdot}mol^{-1}$; C, 724.02 $kJ{\cdot}mol^{-1}$), high detonation properties (${\rho}$, D and P values of 2.04 $g{\cdot}cm^{-3}$ and 2.21 $g{\cdot}cm^{-3}$, 9.98 $km{\cdot}s^{-1}$ and 10.99 $km{\cdot}s^{-1}$, 46.44 GPa and 59.91 Gpa, respectively) and meet the basic stability requirement. Additionally, feasible synthetic routes of the these high energy density compounds (HEDCs) were also proposed via retrosynthetic analysis.

      • Defects of Methylation in Blastocyst Induced by Superovulation do not Cause by Abnormal Expression of Dnmts

        Xing-Wei Liang,Shao-Chen Sun,Yong-Xun Jin,Seul-Ki Lee,Jung-Woo Kwon,Xiang-Shun Cui,Nam-Hyung Kim 한국동물번식학회 2012 Reproductive & Developmental Biology(Supplement) Vol.36 No.2s

        Superovulation, or ovarian stimulation is a commonly used ART for treatment of human infertility/subfertility. Recent studies suggest that superovulation unaffects methylated imprints acquisition in mouse oocytes during oogenesis, whereas disrupts DNA methylation maintenance in embryos during preimplantation development. However, the mechanisms of defects in methylation maintanence caused by superovulation remain largely unclear. We hypothesized that superovulation may disrupt the expression of DNA methyltransferases (Dnmts), the enzymes which catalyze DNA methylation acquisition and maintenance. The mice were subjected to superovulate with low (6 IU) and high (10 IU) dosage hormone. We examined the global DNA methylation levels in zygotes and DNA methylation of repeated sequences (IAP and Line 1) in blastocyst stage embryos. In addition, we investigated the expression of Dnmts (Dnmt3a, Dnmt3b, Dnmt3l and Dnmt1o) in ovulated oocytes and zygotes. Through staining with antibody 5mC and Di-H3K9 coupled with confocal microscopy, we found that global methylation profiles in zygotes derived from females after low or high dosage hormone treatment were not affected when compared to control counterpart. Moreover, methylation at IAP in blastocysts also was unaffected by superovulation, irrespective of hormone dosage. In contrast, methylation level at Line 1 decreased when the females were administered by high dosage hormone. Furthermore, expression of de novo DNA methyltransferase Dnmt3a, Dnmt3b, Dnmt3L, as well as maintenance Dnmt1o in MII oocytes and zygotes was not disrupted by superovulation. Given superovulation adversely affected methylation maintenance in blastocysts during preimplantation development but with normal expression of Dnmts in oocytes and zygotes, it is indicated that defects of embryonic methylation didn’t originate from abnormal expression of Dnmts.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼