RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Catalytic combustion of volatile aromatic compounds over CuO-CeO2 catalyst

        Hongmei Xie,Qinxiang Du,Hui Li,Guilin Zhou,Shengming Chen,Zhaojie Jiao,Jianmin Ren 한국화학공학회 2017 Korean Journal of Chemical Engineering Vol.34 No.7

        Ce1−xCuxO2 oxide solid solution catalysts with different Ce/Cu mole ratios were synthesized by the one-pot complex method. The prepared Ce1−xCuxO2 catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and H2 temperature-programmed reduction (H2-TPR). Their catalytic properties were also investigated by catalytic combustion of phenyl volatile organic compounds (PVOCs: benzene, toluene, xylene, and ethylbenzene) in air. XRD analysis confirmed that the CuO species can fully dissolve into the CeO2 lattice to form CeCu oxide solid solutions. XPS and H2-TPR results indicated that the prepared Ce1−xCuxO2 catalysts contain abundant reactive oxygen species and superior reducibility. Furthermore, the physicochemical properties of the prepared Ce1−xCuxO2 catalysts are affected by the Ce/Cu mole ratio. The CeCu3 catalyst with Ce/Cu mole ratio of 3.0 contains abundant reactive oxygen species and exhibits superior catalytic combustion activity of PVOCs. Moreover, the ignitability of PVOCs is also affected by the respective physicochemical properties. The catalytic combustion conversions of ethylbenzene, xylene, toluene, and benzene are 99%, 98.9%, 94.3%, and 62.8% at 205, 220, 225, and 225 oC, respectively.

      • KCI등재

        Advanced glycation end products promote meniscal calcification by activating the mTOR-ATF4 positive feedback loop

        Yang Sheng,Xie JiaJun,Pan ZhiJie,Guan HongMei,Tu YueSheng,Ye YuanJian,Huang ShouBin,Fu ShiQiang,Li KangXian,Huang ZhiWei,Li XiaoQi,Shi ZhanJun,Li Le,Zhang Yang 생화학분자생물학회 2024 Experimental and molecular medicine Vol.56 No.-

        The meniscus is vital for maintaining knee homeostasis and function. Meniscal calcification is one of the earliest radiological indicators of knee osteoarthritis (KOA), and meniscal calcification is associated with alterations in biomechanical properties. Meniscal calcification originates from a biochemical process similar to vascular calcification. Advanced glycation end products (AGEs) and their receptors (RAGEs) reportedly play critical roles in vascular calcification. Herein, we investigated whether targeting AGE-RAGE is a potential treatment for meniscal calcification. In our study, we demonstrated that AGE-RAGE promotes the osteogenesis of meniscal cells and exacerbates meniscal calcification. Mechanistically, AGE-RAGE activates mTOR and simultaneously promotes ATF4 accumulation, thereby facilitating the ATF4-mTOR positive feedback loop that enhances the osteogenic capacity of meniscal cells. In this regard, mTOR inhibits ATF4 degradation by reducing its ubiquitination, while ATF4 activates mTOR by increasing arginine uptake. Our findings substantiate the unique role of AGE-RAGE in the meniscus and reveal the role of the ATF4-mTOR positive feedback loop during the osteogenesis of meniscal cells; these results provide potential therapeutic targets for KOA.

      • KCI등재

        Influence of CeO2 morphology on the catalytic oxidation of ethanol in air

        Guilin Zhou,Baoguo Gui,Hongmei Xie,Fang Yang,Yong Chen,Shengming Chen,Xuxu Zheng 한국공업화학회 2014 Journal of Industrial and Engineering Chemistry Vol.20 No.1

        Nano-CeO2 catalysts of different shapes were synthesized at different hydrothermal crystallizationtemperatures from an alkaline aqueous solution. X-ray diffraction (XRD), transmission electronmicroscope (TEM), and H2 temperature-programmed reduction (H2-TPR) were used to study thesynthesized nano-CeO2 catalyst samples. The catalytic properties of the prepared nano-CeO2 catalystsfor the catalytic oxidation of ethanol in air were also investigated. TEM analysis showed that CeO2nanorod and nanocube catalysts have been synthesized at hydrothermal crystallization temperatures of373 K and 453 K, respectively. XRD results showed that the synthesized nano-CeO2 catalysts have similarcubic fluorite structures. H2-TPR results indicated that CeO2 nanorod and nanocube catalysts exhibitdifferent reduction behaviors for H2 and that the nanorod catalyst has better low-temperature reductionperformance than the nanocube catalyst. Ethanol catalytic oxidation results indicated that oxidation andcondensation products (including acetaldehyde, acetic acid, CO2, and ethyl acetate) have been producedfrom the prepared catalysts. The ethyl acetate and acetic acid can be ignited by ethanol at lowtemperature on the CeO2(R) catalyst to give low catalytic combustion temperature for ethyl acetate andacetic acid molecules. CeO2 nanorods gave ethanol oxidation conversion rates above 99.2% at 443 K andCO2 selectivity exceeding 99.6% at 483 K, while CeO2 nanocubes gave ethanol oxidation conversion ratesof about 95.1% until 508 K and CO2 selectivity of only 93.86% at 543 K. CeO2 nanorod is a potential lowcostand effective catalyst for removing trace amounts of ethanol to purify air.

      • KCI등재

        Reduction of CO2 to CO via reverse water-gas shift reaction over CeO2 catalyst

        Bican Dai,Shiquan Cao,Hongmei Xie,Guilin Zhou,Shengming Chen 한국화학공학회 2018 Korean Journal of Chemical Engineering Vol.35 No.2

        CeO2 catalysts with different structure were prepared by hard-template (Ce-HT), complex (Ce-CA), and precipitation methods (Ce-PC), and their performance in CO2 reverse water gas shift (RWGS) reaction was investigated. The catalysts were characterized using XRD, TEM, BET, H2-TPR, and in-situ XPS. The results indicated that the structure of CeO2 catalysts was significantly affected by the preparation method. The porous structure and large specific surface area enhanced the catalytic activity of the studied CeO2 catalysts. Oxygen vacancies as active sites were formed in the CeO2 catalysts by H2 reduction at 400 oC. The Ce-HT, Ce-CA, and Ce-PC catalysts have a 100% CO selectivity and CO2 conversion at 580 oC was 15.9%, 9.3%, and 12.7%, respectively. The highest CO2 RWGS reaction catalytic activity for the Ce-HT catalyst was related to the porous structure, large specific surface area (144.9m2∙g−1) and formed abundant oxygen vacancies.

      • SCOPUSSCIEKCI등재

        Maxillary protraction using customized mini-plates for anchorage in an adolescent girl with skeletal Class III malocclusion

        Shuran Liang,Xianju Xie,Fan Wang,Qiao Chang,Hongmei Wang,Yuxing Bai 대한치과교정학회 2020 대한치과교정학회지 Vol.50 No.5

        The treatment of skeletal Class III malocclusion in adolescents is challenging. Maxillary protraction, particularly that using bone anchorage, has been proven to be an effective method for the stimulation of maxillary growth. However, the conventional procedure, which involves the surgical implantation of mini-plates, is traumatic and associated with a high risk. Three-dimensional (3D) digital technology offers the possibility of individualized treatment. Customized miniplates can be designed according to the shape of the maxillary surface and the positions of the roots on cone-beam computed tomography scans; this reduces both the surgical risk and patient trauma. Here we report a case involving a 12-year-old adolescent girl with skeletal Class III malocclusion and midface deficiency that was treated in two phases. In phase 1, rapid maxillary expansion and protraction were performed using 3D-printed mini-plates for anchorage. The mini-plates exhibited better adaptation to the bone contour, and titanium screw implantation was safer because of the customized design. The orthopedic force applied to each mini-plate was approximately 400–500 g, and the plates remained stable during the maxillary protraction process, which exhibited efficacious orthopedic effects and significantly improved the facial profile and esthetics. In phase 2, fixed appliances were used for alignment and leveling of the maxillary and mandibular dentitions. The complete two-phase treatment lasted for 24 months. After 48 months of retention, the treatment outcomes remained stable.

      • KCI등재

        Phenyl VOCs catalytic combustion on supported CoMn/AC oxide catalyst

        Guilin Zhou,Xiaoling He,Sheng Liu,Hongmei Xie,Min Fu 한국공업화학회 2015 Journal of Industrial and Engineering Chemistry Vol.21 No.1

        Supported CoMn/AC composite oxide catalysts were prepared by a typical impregnation methodat different calcination temperatures. The prepared CoMn/AC catalysts were characterized, and thecatalytic activity of the prepared supported CoMn/AC oxide catalysts was also investigated by thecatalytic combustion of phenyl volatile organic compounds (VOCs) (benzene, toluene, andethylbenzene). XRD and XPS results indicated that MnCo2O4 and CoMn2O4 were the main crystalphase species in the prepared supported CoMn/AC oxide catalysts. The active components wereobserved to be highly dispersed and had small crystal sizes. The toluene catalytic combustion resultsdemonstrated that the CAT350 catalyst had higher toluene catalytic combustion activity than theCTA250, CAT300, and CAT400 catalysts. The toluene catalytic combustion conversion of the CAT350catalyst exceeded 93.5% at 235 8C, with a decreased toluene concentration in air of less than 130 ppm at250 8C. The order of toluene catalytic activity of the supported CoMn/AC oxide catalystswas as follows:CAT250 < CAT300 CAT400 < CAT350. The catalytic combustion activity and stability of the CAT350catalyst also increased with the increase in reaction temperature. The catalytic activity of the CAT350catalyst was investigated to bring about the complete oxidation of benzene, ethylbenzene, and toluene. The combustibility of phenyl VOCs on the CAT350 catalyst was observed to follow the orderbenzene < ethylbenzene < toluene. Therefore, the differences in the phenyl VOC catalytic combustionperformances of the supported CoMn/AC composite oxide catalysts can be attributed to the differentphysical chemistry properties of the phenyl VOC molecules and the catalyst.

      • KCI등재

        Granularity and Laxative Effect of Ultrafine Powder of Dendrobium officinale

        DanDan Luo,Chao Qu,ZhenBiao Zhang,JianHui Xie,LieQiang Xu,HongMei Yang,CaiLan Li,GuoSheng Lin,HongFeng Wang,ZiRen Su 한국식품영양과학회 2017 Journal of medicinal food Vol.20 No.2

        Constipation is a common disorder that is a significant source of morbidity among people around the world ranging from 2% to 28%. Dendrobium officinale Kimura et Migo is a traditional herbal medicine and health food used for tonicity of the stomach and promotion of body fluid production in China. This study aimed to prepare the ultrafine powder of Dendrobium officinale (UDO) and investigate its laxative effect and potential mechanism in mice with diphenoxylate-induced constipation. Results indicated that the mean diameter (d50) of UDO obtained by ball milling was 6.56 lm. UDO (62.5, 125, and 250 mg/kg, p.o.) could significantly enhance the gastrointestinal transit ratio and promote fecal output. Moreover, UDO treatment resulted in significant increases in the serum levels of acetylcholinesterase (AChE), gastrin (Gas), motilin (MTL), and substance P (SP), and obviously decreased serum contents of somatostatin (SS). Taken together, UDO, which can be easily obtained through milling to a satisfactory particle size, exhibited obvious laxative effect in diphenoxylate-induced constipated mice, and the mechanism might be associated with elevated levels of AChE, Gas, MTL, SP, and reduced production of SS. UDO has the potential for further development into an alternative effective diet therapy for constipation.

      • SCISCIESCOPUS

        The genome of the cucumber, Cucumis sativus L.

        Huang, Sanwen,Li, Ruiqiang,Zhang, Zhonghua,Li, Li,Gu, Xingfang,Fan, Wei,Lucas, William J,Wang, Xiaowu,Xie, Bingyan,Ni, Peixiang,Ren, Yuanyuan,Zhu, Hongmei,Li, Jun,Lin, Kui,Jin, Weiwei,Fei, Zhangjun,Li Nature Publishing Group 2009 Nature genetics Vol.41 No.12

        Cucumber is an economically important crop as well as a model system for sex determination studies and plant vascular biology. Here we report the draft genome sequence of Cucumis sativus var. sativus L., assembled using a novel combination of traditional Sanger and next-generation Illumina GA sequencing technologies to obtain 72.2-fold genome coverage. The absence of recent whole-genome duplication, along with the presence of few tandem duplications, explains the small number of genes in the cucumber. Our study establishes that five of the cucumber's seven chromosomes arose from fusions of ten ancestral chromosomes after divergence from Cucumis melo. The sequenced cucumber genome affords insight into traits such as its sex expression, disease resistance, biosynthesis of cucurbitacin and 'fresh green' odor. We also identify 686 gene clusters related to phloem function. The cucumber genome provides a valuable resource for developing elite cultivars and for studying the evolution and function of the plant vascular system.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼