RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Fabrication of copper ions-substituted hydroxyapatite/polydopamine nanocomposites with high antibacterial and angiogenesis effects for promoting infected wound healing

        Bailong Tao,Chuanchuan Lin,Ai Guo,Yonglin Yu,Xian Qin,Kai Li,Hongchuan Tian,Weiwei Yi,Dengliang Lei,Lixue Chen 한국공업화학회 2021 Journal of Industrial and Engineering Chemistry Vol.104 No.-

        Infected wound healing remains a critical threat, which frequently delays the healing process and evenleads to severe life-threatening complications. Herein, we reported an effective anti-infection approach,which was based on copper ions-releasing hydroxyapatite/polydopamine (HA-Cu/PDA) nanocompositeswith photothermal effect. The HA-Cu/PDA nanocomposites was fabricated through a co-precipitationreaction between polydopamine (PDA)-coated hydroxyapatite nanoparticles (HA)-loaded Cu2+ (HA-Cu). Through a synergistic effect of released Cu2+ and photothermal efficiency of PDA coating, and the HACu/PDA nanocomposites exhibited extraordinary antibacterial capacities against Escherichia coli (E. coli)and Staphylococcus aureus (S. aureus). The nanocomposites presented good biocompatibility for mouseembryonic fibroblast (NIH-3T3) cells and promoted NIH3T3 cells to migrate toward wound sites. Additionally, this nanocomposite could stimulate the tissue remodeling-related gene expression toinduce the blood vessels formation, granulation tissues and collagen deposition, and eventually enhancewound healing. In vivo study further verified that HA-Cu/PDA nanocomposites with NIR irradiation couldsignificantly improve bacterial infected wound healing through the prominent antibacterial property,reduced inflammatory response, the formation of granulation tissue, collagen deposition, and angiogenesisability. Thus, this study develops a versatile strategy for a broad range of wound healing and skinreconstruction caused by bacterial infection.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼