RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Evaluation of metal contamination and phytoremediation potential of aquatic macrophytes of East Kolkata Wetlands, India

        Amina Khatun,Sandipan Pal,Aloke Kumar Mukherjee,Palas Samanta,Subinoy Mondal,Debraj Kole,Priyanka Chandra,Apurba Ratan Ghosh 환경독성보건학회 2016 환경독성보건학회지 Vol.31 No.-

        Objectives The present study analyzes metal contamination in sediment of the East Kolkata Wetlands, a Ramsar site, which is receiving a huge amount of domestic and industrial wastewater from surrounding areas. The subsequent uptake and accumulation of metals in different macrophytes are also examined in regard to their phytoremediation potential. Methods Metals like cadmium (Cd), copper (Cu), manganese (Mn), and lead (Pb) were estimated in sediment, water and different parts of the macrophytes Colocasia esculenta and Scirpus articulatus. Results The concentration of metals in sediment were, from highest to lowest, Mn (205.0±65.5 mg/kg)>Cu (29.9±10.2 mg/kg)>Pb (22.7±10.3 mg/kg)>Cd (3.7±2.2 mg/kg). The phytoaccumulation tendency of these metals showed similar trends in both native aquatic macrophyte species. The rate of accumulation of metals in roots was higher than in shoots. There were strong positive correlations (p <0.001) between soil organic carbon (OC) percentage and Mn (r =0.771), and sediment OC percentage and Pb (r=0.832). Cation exchange capacity (CEC) also showed a positive correlation (p <0.001) with Cu (r=0.721), Mn (r=0.713), and Pb (r=0.788), while correlations between sediment OC percentage and Cu (r=0.628), sediment OC percentage and Cd (r=0.559), and CEC and Cd (r=0.625) were significant at the p <0.05 level. Conclusions Bioaccumulation factor and translocation factors of these two plants revealed that S. articulatus was comparatively more efficient for phytoremediation, whereas phytostabilization potential was higher in C. esculenta .

      • Evaluation of metal contamination and phytoremediation potential of aquatic macrophytes of East Kolkata Wetlands, India

        Khatun, Amina,Pal, Sandipan,Mukherjee, Aloke Kumar,Samanta, Palas,Mondal, Subinoy,Kole, Debraj,Chandra, Priyanka,Ghosh, Apurba Ratan The Korean Society of Environmental Toxicology 2016 환경독성보건학회지 Vol.31 No.-

        Objectives The present study analyzes metal contamination in sediment of the East Kolkata Wetlands, a Ramsar site, which is receiving a huge amount of domestic and industrial wastewater from surrounding areas. The subsequent uptake and accumulation of metals in different macrophytes are also examined in regard to their phytoremediation potential. Methods Metals like cadmium (Cd), copper (Cu), manganese (Mn), and lead (Pb) were estimated in sediment, water and different parts of the macrophytes Colocasia esculenta and Scirpus articulatus. Results The concentration of metals in sediment were, from highest to lowest, Mn ($205.0{\pm}65.5mg/kg$)>Cu ($29.9{\pm}10.2mg/kg$)>Pb ($22.7{\pm}10.3mg/kg$)>Cd ($3.7{\pm}2.2mg/kg$). The phytoaccumulation tendency of these metals showed similar trends in both native aquatic macrophyte species. The rate of accumulation of metals in roots was higher than in shoots. There were strong positive correlations (p <0.001) between soil organic carbon (OC) percentage and Mn (r =0.771), and sediment OC percentage and Pb (r=0.832). Cation exchange capacity (CEC) also showed a positive correlation (p <0.001) with Cu (r=0.721), Mn (r=0.713), and Pb (r=0.788), while correlations between sediment OC percentage and Cu (r=0.628), sediment OC percentage and Cd (r=0.559), and CEC and Cd (r=0.625) were significant at the p <0.05 level. Conclusions Bioaccumulation factor and translocation factors of these two plants revealed that S. articulatus was comparatively more efficient for phytoremediation, whereas phytostabilization potential was higher in C. esculenta.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼