RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재
      • KCI등재

        MiR-144-3p and Its Target Gene β-Amyloid Precursor Protein Regulate 1-Methyl-4-Phenyl-1,2-3,6-Tetrahydropyridine-Induced Mitochondrial Dysfunction

        Li, Kuo,Zhang, Junling,Ji, Chunxue,Wang, Lixuan Korean Society for Molecular and Cellular Biology 2016 Molecules and cells Vol.39 No.7

        MicroRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. The present study focused on the role of hsa-miR-144-3p in one of the neuro-degenerative diseases, Parkinson's disease (PD). Our study showed a remarkable down-regulation of miR-144-3p expression in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated SH-SY5Y cells. MiR-144-3p was then overexpressed and silenced in human SH-SY5Y cells by miRNA-mimics and miRNA-inhibitor transfections, respectively. Furthermore, ${\beta}$-amyloid precursor protein (APP) was identified as a target gene of miR-144-3p via a luciferase reporter assay. We found that miR-144-3p overexpression significantly inhibited the protein expression of APP. Since mitochondrial dysfunction has been shown to be one of the major pathological events in PD, we also focused on the role of miR-144-3p and APP in regulating mitochondrial functions. Our study demonstrated that up-regulation of miR-144-3p increased expression of the key genes involved in maintaining mitochondrial function, including peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$(PGC-$1{\alpha}$), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). Moreover, there was also a significant increase in cellular ATP, cell viability and the relative copy number of mtDNA in the presence of miR-144-3p overexpression. In contrast, miR-144-3p silencing showed opposite effects. We also found that APP overexpression significantly decreased ATP level, cell viability, the relative copy number of mtDNA and the expression of these three genes, which reversed the effects of miR-144-3p overexpression. Taken together, these results show that miR-144-3p plays an important role in maintaining mitochondrial function, and its target gene APP is also involved in this process.

      • KCI등재

        Target unbiased meta-learning for graph classification

        Li Ming,Zhu Shuo,Li Chunxu,Zhao Wencang 한국CDE학회 2021 Journal of computational design and engineering Vol.8 No.5

        Even though numerous works focus on the few-shot learning issue by combining meta-learning, there are still limits to traditional graph classification problems. The antecedent algorithms directly extract features from the samples, and do not take into account the preference of the trained model to the previously “seen” targets. In order to overcome the aforementioned issues, an effective strategy with training an unbiased meta-learning algorithm was developed in this paper, which sorted out problems of target preference and few-shot under the meta-learning paradigm. First, the interactive attention extraction module as a supplement to feature extraction was employed, which improved the separability of feature vectors, reduced the preference of the model for a certain target, and remarkably improved the generalization ability of the model on the new task. Second, the graph neural network was used to fully mine the relationship between samples to constitute graph structures and complete image classification tasks at a node level, which greatly enhanced the accuracy of classification. A series of experimental studies were conducted to validate the proposed methodology, where the few-shot and semisupervised learning problem has been effectively solved. It also proved that our model has better accuracy than traditional classification methods on real-world datasets.

      • KCI등재

        Maternal nutrition altered embryonic MYOD1, MYF5, and MYF6 gene expression in genetically fat and lean lines of chickens

        Li Feng,Yang Chunxu,Xie Yingjie,Gao Xiang,Zhang Yuanyuan,Ning Hangyi,Liu Guangtao,Chen Zhihui,Shan Anshan 아세아·태평양축산학회 2022 Animal Bioscience Vol.35 No.8

        Objective: The objectives of this study were to evaluate the effects of daily feed intake during the laying period on embryonic myogenic differentiation 1 (MYOD1), myogenic factor 5 (MYF5), and myogenic factor 6 (MYF6) gene expression in genetically fat and lean lines of chickens. Methods: An experiment in a 2×2 factorial design was conducted with two dietary intake levels (100% and 75% of nutrition recommendation) and two broiler chicken lines (fat and lean). Two lines of hens (n = 384 for each line) at 23th week of age were randomly divided into 4 treatments with 12 replicates of 16 birds. The experiment started at 27th week of age (5% egg rate) and ended at 54th week of age. Hatched eggs from the medium laying period were collected. Real time polymerase chain reaction analysis was used to analyse the MYOD1, MYF5, and MYF6 mRNA levels of E7, E9, E11, E13, and E15 body tissues and E17, E19, and E21 chest and thigh muscle samples. Results: The results indicated that there were significant effects of line, dietary intake, and interactions between them on MYOD1, MYF5, and MYF6 gene mRNA expression levels in embryonic tissues. Low daily feed intake did not change the expression trend of MYOD1 mRNA in either line, but changed the peak values, especially in lean line. Low daily feed intake altered the trend in MYF5 mRNA expression level in both lines and apparently delayed its onset. There was no apparent effect of low daily feed intake on the trends of MYF6 mRNA expression levels in either line, but it significantly changed the values on many embryonic days. Conclusion: Maternal nutrient restriction affects myogenesis and is manifested in the expression of embryonic MYOD1, MYF5, and MYF6 genes. Long term selection for fat deposition in broiler chickens changes the pattern and intensity of myogenesis. Objective: The objectives of this study were to evaluate the effects of daily feed intake during the laying period on embryonic myogenic differentiation 1 (<i>MYOD1</i>), myogenic factor 5 (<i>MYF5</i>), and myogenic factor 6 (<i>MYF6</i>) gene expression in genetically fat and lean lines of chickens.Methods: An experiment in a 2×2 factorial design was conducted with two dietary intake levels (100% and 75% of nutrition recommendation) and two broiler chicken lines (fat and lean). Two lines of hens (n = 384 for each line) at 23th week of age were randomly divided into 4 treatments with 12 replicates of 16 birds. The experiment started at 27th week of age (5% egg rate) and ended at 54th week of age. Hatched eggs from the medium laying period were collected. Real time polymerase chain reaction analysis was used to analyse the <i>MYOD1</i>, <i>MYF5</i>, and <i>MYF6</i> mRNA levels of E7, E9, E11, E13, and E15 body tissues and E17, E19, and E21 chest and thigh muscle samples.Results: The results indicated that there were significant effects of line, dietary intake, and interactions between them on <i>MYOD1</i>, <i>MYF5</i>, and <i>MYF6</i> gene mRNA expression levels in embryonic tissues. Low daily feed intake did not change the expression trend of <i>MYOD1</i> mRNA in either line, but changed the peak values, especially in lean line. Low daily feed intake altered the trend in <i>MYF5</i> mRNA expression level in both lines and apparently delayed its onset. There was no apparent effect of low daily feed intake on the trends of <i>MYF6</i> mRNA expression levels in either line, but it significantly changed the values on many embryonic days.Conclusion: Maternal nutrient restriction affects myogenesis and is manifested in the expression of embryonic <i>MYOD1</i>, <i>MYF5</i>, and <i>MYF6</i> genes. Long term selection for fat deposition in broiler chickens changes the pattern and intensity of myogenesis.

      • KCI등재

        Preparation of Silver Nanocap Arrays and Their Surface-enhanced Raman Scattering Activity

        Chunxu Wang,Duo Xu,Yuhai Wang,Li Wang,Lei Chen,Xiangxin Xue,Zhengkun Qin 대한화학회 2017 Bulletin of the Korean Chemical Society Vol.38 No.10

        In this article, a surface-enhanced Raman scattering (SERS) substrate of silver nanocap arrays was reported. With increasing the size of nanocaps, the localized surface plasmon resonance (LSPR) of the arrays exhibited tunable ability in the visible spectral region. The optical response of the nanocap arrays stimulated their use in SERS experiments. The assessment of SERS activity of the nanocap arrays was performed by using the 514.5 nm excitation line, and different average enhancement factor (EF) values were obtained. The good tunability of LSPR, relatively high average EF values and long-range order of these substrates suggest that the silver nanocap arrays have promising applications as functional components in spectroscopy, immunoassay, biosensors, and biochips.

      • KCI등재

        Analysis and Design of a Separate Sampling Adaptive PID Algorithm for Digital DC-DC Converters

        Changyuan Chang,Xin Zhao,Chunxue Xu,Yuanye Li,Cheng`en Wu 전력전자학회 2016 JOURNAL OF POWER ELECTRONICS Vol.16 No.6

        Based on the conventional PID algorithm and the adaptive PID (AD-PID) algorithm, a separate sampling adaptive PID (SSA-PID) algorithm is proposed to improve the transient response of digitally controlled DC-DC converters. The SSA-PID algorithm, which can be divided into an oversampled adaptive P (AD-P) control and an adaptive ID (AD-ID) control, adopts a higher sampling frequency for AD-P control and a conventional sampling frequency for AD-ID control. In addition, it can also adaptively adjust the PID parameters (i.e. Kp, Ki and Kd) based on the system state. Simulation results show that the proposed algorithm has better line transient and load transient responses than the conventional PID and AD-PID algorithms. Compared with the conventional PID and AD-PID algorithms, the experimental results based on a FPGA indicate that the recovery time of the SSA-PID algorithm is reduced by 80% and 67% separately, and that overshoot is decreased by 33% and 12% for a 700㎃ load step. Moreover, the SSA-PID algorithm can achieve zero overshoot during startup.

      • KCI등재

        Target-biased informed trees: sampling-based method for optimal motion planning in complex environments

        Wang Xianpeng,Ma Xinglu,Li Xiaoxu,Ma Xiaoyu,Li Chunxu 한국CDE학회 2022 Journal of computational design and engineering Vol.9 No.2

        Aiming at the problem that the progressively optimized Rapidly-exploring Random Trees Star (RRT*) algorithm generates a large number of redundant nodes, which causes slow convergence and low search efficiency in high-dimensional and complex environments. In this paper we present Target-biased Informed Trees (TBIT*), an improved RRT* path planning algorithm based on target-biased sampling strategy and heuristic optimization strategy. The algorithm adopts a combined target bias strategy in the search phase of finding the initial path to guide the random tree to grow rapidly toward the target direction, thereby reducing the generation of redundant nodes and improving the search efficiency of the algorithm; after the initial path is searched, heuristic sampling is used to optimize the initial path instead of optimizing the random tree, which can benefit from reducing useless calculations, and improve the convergence capability of the algorithm. The experimental results show that the algorithm proposed in this article changes the randomness of the algorithm to a certain extent, and the search efficiency and convergence capability in complex environments have been significantly improved, indicating that the improved algorithm is feasible and efficient.

      • SCIESCOPUSKCI등재

        PRR11 and SKA2 gene pair is overexpressed and regulated by p53 in breast cancer

        Wang, Yitao,Zhang, Chunxue,Mai, Li,Niu, Yulong,Wang, Yingxiong,Bu, Youquan Korean Society for Biochemistry and Molecular Biol 2019 BMB Reports Vol.52 No.2

        Our previous study found that two novel cancer-related genes, PRR11 and SKA2, constituted a classic gene pair that was regulated by p53 and NF-Y in lung cancer. However, their role and regulatory mechanism in breast cancer remain elusive. In this study, we found that the expression levels of PRR11 and SKA2 were upregulated and have a negative prognotic value in breast cancer. Loss-of-function experiments showed that RNAi-mediated knockdown of PRR11 and/or SKA2 inhibited proliferation, migration, and invasion of breast cancer cells. Mechanistic experiments revealed that knockdown of PRR11 and/or SKA2 caused dysregulation of several downstream genes, including CDK6, TPM3, and USP12, etc. Luciferase reporter assays demonstrated that wild type p53 significantly repressed the PRR11-SKA2 bidirectional promoter activity, but not NF-Y. Interestingly, NF-Y was only essential for and correlated with the expression of PRR11, but not SKA2. Consistently, adriamycin-induced (ADR) activation of endogenous p53 also caused significant repression of the PRR11 and SKA2 gene pair expression. Notably, breast cancer patients with lower expression levels of either PRR11 or SKA2, along with wild type p53, exhibited better disease-free survival compared to others with p53 mutations and/or higher expression levels of either PRR11 or SKA2. Collectively, our study indicates that the PRR11 and SKA2 transcription unit might be an oncogenic contributor and might serve as a novel diagnostic and therapeutic target in breast cancer.

      • SCIESCOPUSKCI등재
      • KCI등재

        MiR-144-3p and Its Target Gene beta-Amyloid Precursor Protein Regulate 1-Methyl-4-Phenyl-1,2-3,6-Tetrahydropyridine-Induced Mitochondrial Dysfunction

        Lixuan Wang,Kuo Li,Junling Zhang,Chunxue Ji 한국분자세포생물학회 2016 Molecules and cells Vol.39 No.7

        MicroRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. The present study focused on the role of hsa-miR-144-3p in one of the neurodegenerative diseases, Parkinson’s disease (PD). Our study showed a remarkable down-regulation of miR-144-3p expression in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated SH-SY5Y cells. MiR-144-3p was then overexpressed and silenced in human SH-SY5Y cells by miRNA-mimics and miRNA-inhibitor transfections, respectively. Furthermore, -amyloid precursor protein (APP) was identified as a target gene of miR-144-3p via a luciferase reporter assay. We found that miR-144-3p overexpression significantly inhibited the protein expression of APP. Since mitochondrial dysfunction has been shown to be one of the major pathological events in PD, we also focused on the role of miR-144-3p and APP in regulating mitochondrial functions. Our study demonstrated that up-regulation of miR-144-3p increased expression of the key genes in-volved in maintaining mitochondrial function, including peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). Moreover, there was also a significant increase in cellular ATP, cell viability and the relative copy number of mtDNA in the presence of miR-144-3p overexpression. In contrast, miR-144-3p silencing showed opposite effects. We also found that APP overexpression significantly decreased ATP level, cell viability, the relative copy number of mtDNA and the expression of these three genes, which reversed the effects of miR-144-3p overexpression. Taken together, these results show that miR-144-3p plays an important role in maintaining mitochondrial function, and its target gene APP is also involved in this process.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼