RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Modeling, Preparation, and Elemental Doping of Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> Garnet-Type Solid Electrolytes: A Review

        Cao, Shiyu,Song, Shangbin,Xiang, Xing,Hu, Qing,Zhang, Chi,Xia, Ziwen,Xu, Yinghui,Zha, Wenping,Li, Junyang,Gonzale, Paulina Mercedes,Han, Young-Hwan,Chen, Fei The Korean Ceramic Society 2019 한국세라믹학회지 Vol.56 No.2

        Recently, all-solid-state batteries (ASSBs) have attracted increasing interest owing to their higher energy density and safety. As the core material of ASSBs, the characteristics of the solid electrolyte largely determine the performance of the battery. Thus far, a variety of inorganic solid electrolytes have been studied, including the NASICON-type, LISICON-type, perovskite-type, garnet-type, glassy solid electrolyte, and so on. The garnet Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) solid electrolyte is one of the most promising candidates because of its excellent comprehensively electrochemical performance. Both, experiments and theoretical calculations, show that cubic LLZO has high room-temperature ionic conductivity and good chemical stability while contacting with the lithium anode and most of the cathode materials. In this paper, the crystal structure, Li-ion transport mechanism, preparation method, and element doping of LLZO are introduced in detail based on the research progress in recent years. Then, the development prospects and challenges of LLZO as applied to ASSBs are discussed.

      • KCI등재

        Boundaries of the Amurian Plate identified using multiple geophysical methods

        Shuan Hu Li,Chi Li,Chun xiao Wang 한국지질과학협의회 2020 Geosciences Journal Vol.24 No.1

        One of the most topical issues regarding the recent geodynamics of Eastern Asia is identifying the boundaries of the Amurian (AM) block, it has great significance to research the relationship between the Northeast Asia and the Pacific Plate. In this study, continuous Global Positioning System (GPS) measurement data from Northeast China, Southeast Russia, the Korean Peninsula (KP) and Eastern Mongolia are used to calculate the velocity field and Euler pole. The results show that the two sides of the Tanlu fault zone have different velocity directions and Euler centers. And the movement velocity and rotation velocity of the two blocks are different. Chi-square (χ2) statistics indicate significant relative movement between the AM and KP blocks, confirming that they are generally independent and do not belong to the same block. The focal mechanism solutions and energy release indicate that Tanlu fault zone is a large dextral strike-slip fault, there are many deep-focus earthquakes, shallow-focus earthquakes and volcanic earthquakes in this fault zone, which release a lot of energy. Under the strong pushing of the Pacific plate, the KP block is forced to changed direction from SEE to SE along the Tanlu fault zone. These comprehensive calculations show that the AM and KP blocks are two mutually independent blocks, the boundary between them is the Tanlu fault zone.

      • KCI등재

        Identifying the more suitable nostril for nasotracheal intubation using radiographs

        Chi, Seong In,Park, Sookyung,Joo, Li-Ah,Shin, Teo Jeon,Kim, Hyun Jeong,Seo, Kwang-Suk The Korean Dental Society of Anesthsiology 2016 Journal of Dental Anesthesia and Pain Medicine Vol.16 No.2

        Background: One nostril must be selected for nasotracheal intubation. In some cases, structural anomalies within the nasal cavity hinder the insertion of the tube or complications, such as epistaxis, develop. This study examined the possibility of using radiography to select the nostril that would induce fewer complications. Methods: Four hundred and five patients who underwent nasotracheal intubation under general anesthesia were studied. A 7.0-mm internal diameter nasal right angle endotracheal (RAE) tube and 6.5-mm internal diameter nasal RAE tube were inserted into men and women, respectively. Complications were considered to have developed in cases in which insertion of the tube into the nasal cavity failed or epistaxis occurred. The tube was inserted into the other nostril for insertion failures and hemostasis was performed in cases of epistaxis. The degree of nasal septal deviation was determined from posteroanterior skull radiographs or panoramic radiographs; the incidence of complications was compared depending on the direction of the septal deviation and the intubated nostril. Results: The radiographs of 390 patients were readable; 94 had nasal septum deviation. The incidence of complications for cases without nasal septum deviation was 16.9%, that for cases in which the tube was inserted into the nostril on the opposite side of the deviation was 18.5%, and that for cases in which the tube was inserted into the nostril with the deviation was 35.0%, showing a high incidence of complications when intubation is performed through the nostril with septum deviation (chi-square test, P < 0.05 ). Conclusions: Although there were no differences in the incidence rates of complications between intubation through the left nostril and that through the right nostril, radiological findings indicated that incidence of complications significantly increased when the tube was inserted into the nostril with the septum deviation.

      • KCI등재

        Purification and Characterization of Extracellular Inulinase from a Marine Yeast Pichia guilliermondii and Inulin Hydrolysis by the Purified Inulinase

        Fang Gong,Tong Zhang,Jun Sheng,Jing Li,Xianghong Wang,Zhenming Chi 한국생물공학회 2008 Biotechnology and Bioprocess Engineering Vol.13 No.5

        The extracellular inulinase of the marine yeast Pichia guilliermondii strain 1 was purified to homogeneity resulting in a 7.2-fold increase in specific inulinase activity. The molecular mass of the purified enzyme was estimated to be 50.0 kDa. The op-timal pH and temperature for the purified enzyme were 6.0 and 60C, respectively. The enzyme was activated by Mn²+, Ca²+, K+, Li+, Na+, Fe³+, Fe²+, Cu²+, and Co²+, but Mg²+, Hg²+, and Ag+ inhibited activity. The enzyme was strongly inhibited by phenylmethanesulphonyl fluoride (PMSF), iodoacetic acid, EDTA, and 1, 10-phenanthroline. The Km and Vmax values of the purified inulinase for inulin were 21.1 mg/mL and 0.08 mg/min, respectively. A large number of monosaccharides were de-tected after the hydrolysis of inulin. The deduced protein sequence from the cloned P. guilliermondii strain 1 inulinase gene contained the consensus motifs R-D-P-K-V-F-W-H and W-M-N-D-P-N-G, which are conserved among the inulinases from other microorganisms.

      • SCIESCOPUS

        Electrochemical Cr(VI) reduction using a sacrificial Fe anode: Impacts of solution chemistry and stoichiometry

        Chuang, Sheng-Ming,Ya, Vinh,Feng, Chiao-Lin,Lee, Shou-Jen,Choo, Kwang-Ho,Li, Chi-Wang Elsevier 2018 Separation and purification technology Vol.191 No.-

        <P><B>Abstract</B></P> <P>A systematic investigation of Cr(VI) reduction using electrochemical reduction revealed that the Cr(VI) reduction was extremely fast with reaction kinetics limited by the anodic generation of Fe(II). The Cr(VI) reduction rate increased with decreasing pH at the initial stage of reaction but the time to reach complete Cr(VI) reduction is pH independent. The amount of Fe(II) generated per mole of Cr(VI) reduced was calculated and compared with the stoichiometric value, i.e., 3mole of Fe(II) needed per mole of Cr(VI) reduced. The values are 11.1% higher than the stoichiometric value for pH 7 and 9, but are 32.0% less for pH 3 and 5. The spontaneous reduction of Cr(VI) by Fe<SUP>0</SUP> and adsorption of Cr(VI) to Fe(OH)<SUB>3</SUB> precipitates might contribute the additional Cr(VI) removal. Effect of DO was investigated under various mixing schemes. Under N<SUB>2</SUB> purging, Fe(II) generated for one mole of Cr(VI) reduced is 3.67% higher than the stoichiometric value, while mechanic mixing and aeration mixing show 15% and 19%, respectively, higher than stoichiometric value, indicating that DO does impact Cr(VI) reduction. The electrochemical Cr(VI) reduction process was also employed to treat electroplating wastewater with and without pH pre-adjustment, achieving 100% total Cr and Ni removal for both cases. ORP can be used as a controlling parameter when electrochemical reduction is implemented for Cr(VI) reduction.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Effect of current on Cr(VI) reduction under same current density was studied. </LI> <LI> Effects of initial and fixed pH on Cr(VI) reduction were investigated. </LI> <LI> Effect of DO on Cr(VI) reduction was explored. </LI> <LI> Electrochemical reduction was applied for treating electroplating wastewater. </LI> <LI> ORP is an ideal parameter for controlling electrochemical Cr(VI) reduction. </LI> </UL> </P>

      • Deubiquitination and Stabilization of PD-L1 by CSN5

        Lim, Seung-Oe,Li, Chia-Wei,Xia, Weiya,Cha, Jong-Ho,Chan, Li-Chuan,Wu, Yun,Chang, Shih-Shin,Lin, Wan-Chi,Hsu, Jung-Mao,Hsu, Yi-Hsin,Kim, Taewan,Chang, Wei-Chao,Hsu, Jennifer L.,Yamaguchi, Hirohito,Ding Elsevier 2016 Cancer cell Vol.30 No.6

        <P><B>Summary</B></P> <P>Pro-inflammatory cytokines produced in the tumor microenvironment lead to eradication of anti-tumor immunity and enhanced tumor cell survival. In the current study, we identified tumor necrosis factor alpha (TNF-α) as a major factor triggering cancer cell immunosuppression against T cell surveillance via stabilization of programmed cell death-ligand 1 (PD-L1). We demonstrated that COP9 signalosome 5 (CSN5), induced by NF-κB p65, is required for TNF-α-mediated PD-L1 stabilization in cancer cells. CSN5 inhibits the ubiquitination and degradation of PD-L1. Inhibition of CSN5 by curcumin diminished cancer cell PD-L1 expression and sensitized cancer cells to anti-CTLA4 therapy.</P> <P><B>Highlights</B></P> <P> <UL> <LI> TNF-α stabilizes cancer cell PD-L1 in response to chronic inflammation </LI> <LI> Activation of NF-κB by TNF-α induces CSN5 expression leading to PD-L1 stabilization </LI> <LI> CSN5 enzyme activity controls T cell suppression via PD-L1 deubiquitination </LI> <LI> Destabilization of PD-L1 by CSN5 inhibitor curcumin benefits anti-CTLA4 therapy </LI> </UL> </P> <P><B>Graphical Abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • Polyethylenimine ethoxylated interlayer-mediated ZnO interfacial engineering for high-performance and low-temperature processed flexible perovskite solar cells: A simple and viable route for one-step processed CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>

        Lim, Ju Won,Wang, Huan,Choi, Chi Hun,Quan, Li Na,Chung, Kyungwha,Park, Won-Tae,Noh, Yong-Young,Kim, Dong Ha Elsevier 2019 Journal of Power Sources Vol.438 No.-

        <P><B>Abstract</B></P> <P>Developing perovskite solar cells (PSCs) with high-efficiency and a low-temperature process has great potential for the realization of the scalable, economic, and roll-to-roll based renewable energy conversion devices. ZnO has been recognized as the promising electron transport layer (ETL) that may overcome the limitations of the conventional TiO<SUB>2</SUB>. However, methylammonium lead iodide (MAPbI<SUB>3</SUB>) perovskite is prone to decomposition at the ZnO surface, which hinders the development of simple one-step deposition of perovskite, resulting in the limited photovoltaic performance. Herein, we report interlayer mediated efficient ETLs for viable flexible PSCs. The utilization of polyethyleneimine ethoxylated layer on ZnO prevents the direct contact between the perovskite and ETLs, avoiding the photoactive layer decomposition. Thus, interlayer-mediated PSCs show higher efficiency with enhanced stability by decreasing the electron transport barrier. As a result, the PSC employing tailor-designed ETL interfaces exhibited average power conversion efficiency (PCE) of 15.8%, which was superior by 25.4% to that of a control device (12.6%). With our strategy, we further demonstrated PSCs on flexible substrates which exhibit an average PCE of 11.9% under low-temperature fabrication. The new interface engineering strategy may pave the way to the realization of high performance, easy-to-process, and large-area perovskite optoelectronics.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Universal interface engineering technique for highly stable flexible PSCs. </LI> <LI> The in-depth investigation into the enhanced stability and high-efficiency PSCs. </LI> <LI> Interlayer mediated PSC exhibits 15.8% PCE, superior by 25.4% to control device. </LI> <LI> Low-temperature processed PSCs for the next-generation renewable energy sources. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • Self-powered reduced-dimensionality perovskite photodiodes with controlled crystalline phase and improved stability

        Lim, Ju Won,Wang, Huan,Choi, Chi Hun,Kwon, Hannah,Quan, Li Na,Park, Won-Tae,Noh, Yong-Young,Kim, Dong Ha Elsevier 2019 Nano energy Vol.57 No.-

        <P><B>Abstract</B></P> <P>In this work, we developed the perovskite photodiodes based on the dimensionality-reduced quasi two-dimensional (Q-2D) photoactive layer structure by incorporating phenylethylammonium iodide (PEAI) into methylammonium lead iodide (MAPbI<SUB>3</SUB>), which effectively enhanced both the crystalline phase and the ambient stability of the perovskite. The Q-2D perovskite photodiode exhibited a dark current of 1.76 × 10<SUP>−7</SUP> A/cm<SUP>2</SUP>, resulting in the detectivity (D*) of 2.20 × 10<SUP>12</SUP> J and responsivity of 0.53 A/W, which is among the highest performance levels without the voltage bias (0 V) due to the systematically optimized perovskite phase resulting in the reduced leakage current. In addition, the current density of Q-2D perovskite photodiode maintained 76% of the initial level current density even after 80 days in the ambient condition, compared to 15% of 3D perovskite photodiode control sample. Such superior performance and stability were mainly attributed to the enhanced degree of crystallization of the Q-2D perovskites, which was confirmed by X-ray diffraction and grazing incidence wide-angle X-ray scattering (GIWAXS) measurement. Also, the improved stability of Q-2D perovskite films was confirmed by both lifetime test and atomic force microscopy studies where the negligible number of pinholes was observed in the quasi-2D perovskite films while considerable deformations were found in the 3D perovskites photodiode. Our study suggests a simple and robust protocol for the development of stable and high-performance perovskite photodetectors via dimensional and constitutional optimization of conventional perovskites for the practical usage of perovskite in the photodiode applications.</P> <P><B>Highlights</B></P> <P> <UL> <LI> The Q-2D perovskite photodiode exhibited the D* of 2.20 × 10<SUP>12</SUP> J and R of 0.53 A/W without the voltage bias (0 V). </LI> <LI> The current density of Q-2D perovskite photodiode maintained 76 % of the initial level while 15 % for the 3D one. </LI> <LI> Grazing incidence wide-angle X-ray scattering (GIWAXS) analysis revealed the origin of the stability improvement. </LI> <LI> Quasi-2D perovskite materials can be promising candidates for stable, tunable and flexible optoelectronic applications. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>Dimensionality-controlled perovskite photodiodes with improved stability were systematically fabricated while retaining the comparable electrical performance of conventional three-dimensional perovskites. The quasi-2D perovskite photodetector exhibited an improved detectivity of 2.20 × 10<SUP>12</SUP> J performance and maintained 76% of initial level while the performance of three-dimensional perovskite photodetector remained only 15% after 80 days. Our study suggests a facile solution for the poor stability of the three-dimensional perovskite, with a potential for the development of highly-stable perovskite optoelectronics.</P> <P>[DISPLAY OMISSION]</P>

      • Electrochemical treatment for simultaneous removal of heavy metals and organics from surface finishing wastewater using sacrificial iron anode

        Ya, Vinh,Martin, Natacha,Chou, Yi-Hsuan,Chen, Yi-Ming,Choo, Kwang-Ho,Chen, Shiao-Shing,Li, Chi-Wang Elsevier 2018 Journal of the Taiwan Institute of Chemical Engine Vol.83 No.-

        <P><B>Abstract</B></P> <P>Surface finishing wastewater having low pH (∼2) and high conductivity (>11 mS/cm) was treated by electrocoagulation (EC) or electrochemical Fenton (ECF) processes using sacrificial iron anodes. Under the same theoretical Fe dosage, the effects of electrolytic time, initial pH, and current density on the simultaneous removal of organic and heavy metal were investigated. A complete metal removal was achieved even at the low current density of 24.2 mA/cm<SUP>2</SUP> and short electrolytic time of 4 min, whereas approximately 40% of chemical oxygen demand was removed. Increasing the electric current density did not improve removal efficiencies, but consumed more electric energy. Low current conditions produced a brown color sludge associated with ferric hydroxide. On the contrary, a greenish color sludge was created at a high current due to the formation of ferrous hydroxide. The formation of ferrous hydroxide impacted the treated water quality. The ECF was employed to overcome the low COD removal by the EC, achieving >67% of COD removal. The costs of ECF processes were slightly greater than that of chemical coagulation, but achieving a lot greater heavy metal removals. ECF process can be a promising method for simultaneous removal of heavy metal and organics from complex industrial wastewater.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Organics and metal removals by electrochemical treatments using Fe were studied. </LI> <LI> Fe(II)/Fe(III) distribution depended on current density, reaction time, and solution pH. </LI> <LI> The lower in electric current density, the better in energy efficiency. </LI> <LI> Electrochemical Fenton enhanced organic removal unachieved by electrocoagulation. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • Scrap iron packed in a Ti mesh cage as a sacrificial anode for electrochemical Cr(VI) reduction to treat electroplating wastewater

        Ya, Vinh,Guillou, Esther Le,Chen, Yi-Ming,Yu, Jui-Hsuan,Choo, Kwang-Ho,Chuang, Sheng-Ming,Lee, Shou-Jen,Li, Chi-Wang Elsevier 2018 JOURNAL- TAIWAN INSTITUTE OF CHEMICAL ENGINEERS Vol.87 No.-

        <P><B>Abstract</B></P> <P>A novel sacrificial anode comprised of scrap iron packed inside a cage made of titanium mesh was developed for Cr(VI) reduction. With electric currents applied, the surface passivation of scrap iron electrode could be avoided. Due to the large surface area with open structures provided, the applied current densities (1.18–3.54 mA/cm<SUP>2</SUP>) were low, resulting in low operating voltage and energy consumption. Complete Cr(VI) removal was achieved with electric currents applied, whereas only 20% of the Cr(VI) was removed without electricity. Direct Cr(VI) reduction on the iron surface was a dominant mechanism for the system operated at low (0.25 A) or no current. Acidic pH levels were more effective in Cr(VI) removal, due to more adsorption of Cr(VI) onto the precipitated Fe hydroxide. The trend in total Cr removal was almost the same as that of Cr(VI) removal, but time required to complete total Cr removal was extended. With intermittent electricity supply at a high electric current intensity, the energy consumption of the system was more efficient. Using scrap iron as a sacrificial anode under the intermittent current condition can save 72–77% of the total operational costs required by the conventional plate electrode.</P> <P><B>Highlights</B></P> <P> <UL> <LI> A novel anode packed with scrap iron inside a Ti mesh was used for reducing Cr(VI). </LI> <LI> Electroplating wastewater containing Cr(VI) and Ni(II) was treated. </LI> <LI> Current intensity and initial pH affect the Cr(VI) reduction pattern significantly. </LI> <LI> Intermittent but high electric current supply saved 72–77% of the operating costs. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼