RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Effectiveness of piezoelectric fiber reinforced composite laminate in active damping for smart structures

        Ravindra Singh Chahar,Ravi Kumar B. 국제구조공학회 2019 Steel and Composite Structures, An International J Vol.31 No.4

        This paper deals with the effect of ply orientation and control gain on tip transverse displacement of functionally graded beam layer for both active constrained layer damping (ACLD) and passive constrained layer damping (PCLD) system. The functionally graded beam is taken as host beam with a bonded viscoelastic layer in ACLD beam system. Piezoelectric fiber reinforced composite (PFRC) laminate is a constraining layer which acts as actuator through the velocity feedback control system. A finite element model has been developed to study actuation of the smart beam system. Fractional order derivative constitutive model is used for the viscoelastic constitutive equation. The control voltage required for ACLD treatment for various symmetric ply stacking sequences is highest in case of longitudinal orientation of fibers of PFRC laminate over other ply stacking sequences. Performance of symmetric and anti-symmetric ply laminates on damping characteristics has been investigated for smart beam system using time and frequency response plots. Symmetric and anti-symmetric ply laminates significantly reduce the amplitude of the vibration over the longitudinal orientation of fibers of PFRC laminate. The analysis reveals that the PFRC laminate can be used effectively for developing very light weight smart structures.

      • Visible light assisted photocatalytic degradation of methylene blue dye using Ni doped Co-Zn nanoferrites

        Thakur, Preeti,Chahar, Deepika,Thakur, Atul Techno-Press 2022 Advances in nano research Vol.12 No.4

        Nickel substituted cobalt-zinc ferrite nanoparticles with composition Co<sub>0.5</sub>Zn<sub>0.5</sub>Ni<sub>x</sub>Fe<sub>2-x</sub>O<sub>4</sub> (x = 0.25, 0.5, 0.75, 1.0) were synthesized using a wet chemical method named citrate precursor method. Various characterizations of the prepared nanoferrites were done using X-ray powder diffractometry (XRD), Scanning electron microscopy (SEM), UV visible spectroscopy and Fourier transform spectroscopy technique (FT-IR). XRD confirmed the formation of cubic spinel structure of the samples with single phase having one characteristic peak at (311). The value of optical band gap (E<sub>g</sub>) was found to decrease with Ni substitution and have values in the range 2.30eV to 1.69eV. A Fenton-type system was created by photocatalytic activity using source of visible light for removal of methylene blue dye. Observations revealed increase in the degradation of methylene blue dye with increasing nickel content in the samples. The degradation percentage was increased from 77.32% for x = 0.25 to 90.16% for x = 1.0 in one hour under the irradiation of visible light. Also, the degradation process was found to have pseudo first order kinetics model. Hence, it can be observed that synthesized nickel doped cobalt-zinc ferrites have good capability for water purification and its degradation efficiency enhanced with increase in nickel concentration.

      • KCI등재

        Study of Naturally Occurring Radioactive Material Present in Deep Soil of the Malwa Region of Punjab State of India Using Low Level Background Gamma-Ray Spectrometry

        Srivastava Alok,Chahar Vikash,Chauhan Neeraj,Krupp Dominik,Scherer Ulrich W. 대한방사선방어학회 2022 방사선방어학회지 Vol.47 No.1

        Background: Epidemiological observations such as mental retardation, physical deformities, etc., in children besides different types of cancer in the adult population of the Malwa region have been reported. The present study is designed to get insight into the role of naturally occurring radioactive material (NORM) in causing detrimental health effects observed in the general population of this region.Materials and Methods: Deep soil samples were collected from different locations in the Malwa region. Their activity concentrations were determined using low-level background gammaray spectrometry. High efficiency and high purity germanium detector capped in a lead-shielded chamber having a resolution of 1.8 keV at 1,173 keV and 2.0 keV at the 1,332 keV line of 60Co was used in the present work. Data were evaluated with Genie-2000 software.Results and Discussion: Mean activity concentrations of 238U, 232Th, and 40K in deep soil were found to be 101.3 Bq/kg, 65.8 Bq/kg, and 688.6 Bq/kg, respectively. The mean activity concentration of 238U was found to be three and half times higher than the global average prescribed by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). It was further observed that the activity concentration of 232Th and 40K has a magnitude that is nearly one and half times higher than the global average prescribed by UNSCEAR. In addition, the radioisotope 137Cs which is likely to have its origin in radiation fallout was also observed. It is postulated that the NORM present in high quantity in deep soil somehow get mobilized into the water aquifers used by the general population and thereby causing harmful health problems.Conclusion: It can be stated that the present work has been able to demonstrate the use of low background gamma-ray spectrometry to understand the role of NORM in causing health-related effects in a general population of the Malwa region of Punjab, India.

      • A 3D CFD analysis of flow past a hipped roof with comparison to industrial building standards

        Khalid Khalil,Huzafa Khan,Divyansh Chahar,Jamie F. Townsend,Zeeshan A. Rana 한국풍공학회 2022 Wind and Structures, An International Journal (WAS Vol.34 No.6

        Three-dimensional (3D) computational fluid dynamics (CFD) analysis of flow around a hipped-roof building representative of UK inland conditions are conducted. Unsteady simulations are performed using three variations of the k–ϵ RANS turbulence model namely, the Standard, Realizable, and RNG models, and their predictive capability is measured against current European building standards. External pressure coefficients and wind loading are found through the BS 6399-2:1997 standard (obsolete) and the current European standards (BS EN 1991-1-4:2005 and A1:20101). The current European standard provides a more conservative wind loading estimate compared to its predecessor and the k–ϵ RNG model falls within 15% of the value predicted by the current standard. Surface shear stream-traces and Q-criterion were used to analyze the flow physics for each model. The RNG model predicts immediate flow separation leading to the creation of vortical structures on the hipped-roof along with a larger separation region. It is observed that the Realizable model predicts the side vortex to be a result of both the horseshoe vortex and the flow deflected off it. These model-specific aerodynamic features present the most disparity between building standards at leeward roof locations. Finally, pedestrian comfort and safety criteria are studied where the k–ϵ Standard model predicts the most ideal pedestrian conditions and the Realizable model yields the most conservative levels.

      • KCI등재

        Characteristic white light emission via down-conversion SrGdAlO4:Dy3+ nanophosphor

        Anju Hooda,S.P. Khatkar,Avni Khatkar,Sangeeta Chahar,Sushma Devi,Jyoti Dalal,V.B. Taxak 한국물리학회 2019 Current Applied Physics Vol.19 No.4

        An efficient and cost-effective technique, solution combustion synthesis was used to synthesize Dy3+ doped SrGdAlO4 nanophosphor utilizing urea as a suitable fuel. The tetragonal phase and nano-crystallinity of the synthesized phosphor belonging to I4/mmm space group was confirmed by powder X-ray diffraction (PXRD) and transmission electron microscope (TEM) technique respectively. Various crystal structure parameters and refined atomic positions of host matrix and SrGd0.95Dy0.05AlO4 nanophosphor were determined by Rietveld refinement. The two intense bands i.e. blue and yellow bands were observed in photoluminescence emission spectrum recorded at 352 nm excitation wavelength, associated to transitions 4F9/2→6H15/2 (484 nm) and 4F9/2→6H13/2 (575 nm) respectively. Photometric characterizations revealed the emission of white color by the synthesized nanophosphor proving its wide applications in WLEDs (white light emitting diodes). Band gap values calculated using diffuse reflectance spectra (DRS) were found to vary in the range of 5.50 eV–5.59 eV for host and doped lattice system. Keeping in mind, the concentration quenching phenomenon, SrGd0.95Dy0.05AlO4 was considered as optimized nanophosphor for WLEDs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼