RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Characteristic white light emission via down-conversion SrGdAlO4:Dy3+ nanophosphor

        Anju Hooda,S.P. Khatkar,Avni Khatkar,Sangeeta Chahar,Sushma Devi,Jyoti Dalal,V.B. Taxak 한국물리학회 2019 Current Applied Physics Vol.19 No.4

        An efficient and cost-effective technique, solution combustion synthesis was used to synthesize Dy3+ doped SrGdAlO4 nanophosphor utilizing urea as a suitable fuel. The tetragonal phase and nano-crystallinity of the synthesized phosphor belonging to I4/mmm space group was confirmed by powder X-ray diffraction (PXRD) and transmission electron microscope (TEM) technique respectively. Various crystal structure parameters and refined atomic positions of host matrix and SrGd0.95Dy0.05AlO4 nanophosphor were determined by Rietveld refinement. The two intense bands i.e. blue and yellow bands were observed in photoluminescence emission spectrum recorded at 352 nm excitation wavelength, associated to transitions 4F9/2→6H15/2 (484 nm) and 4F9/2→6H13/2 (575 nm) respectively. Photometric characterizations revealed the emission of white color by the synthesized nanophosphor proving its wide applications in WLEDs (white light emitting diodes). Band gap values calculated using diffuse reflectance spectra (DRS) were found to vary in the range of 5.50 eV–5.59 eV for host and doped lattice system. Keeping in mind, the concentration quenching phenomenon, SrGd0.95Dy0.05AlO4 was considered as optimized nanophosphor for WLEDs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼