RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Portable Low-Cost MRI System Based on Permanent Magnets/Magnet Arrays

        Huang, Shaoying,Ren, Zhi Hua,Obruchkov, Sergei,Gong, JIa,Dykstra, Robin,Yu, Wenwei Korean Society of Magnetic Resonance in Medicine 2019 Investigative Magnetic Resonance Imaging Vol.23 No.3

        Portable low-cost magnetic resonance imaging (MRI) systems have the potential to enable "point-of-care" and timely MRI diagnosis, and to make this imaging modality available to routine scans and to people in underdeveloped countries and areas. With simplicity, no maintenance, no power consumption, and low cost, permanent magnets/magnet arrays/magnet assemblies are attractive to be used as a source of static magnetic field to realize the portability and to lower the cost for an MRI scanner. However, when taking the canonical Fourier imaging approach and using linear gradient fields, homogeneous fields are required in a scanner, resulting in the facts that either a bulky magnet/magnet array is needed, or the imaging volume is too small to image an organ if the magnet/magnet array is scaled down to a portable size. Recently, with the progress on image reconstruction based on non-linear gradient field, static field patterns without spatial linearity can be used as spatial encoding magnetic fields (SEMs) to encode MRI signals for imaging. As a result, the requirements for the homogeneity of the static field can be relaxed, which allows permanent magnets/magnet arrays with reduced sizes, reduced weight to image a bigger volume covering organs such as a head. It offers opportunities of constructing a truly portable low-cost MRI scanner. For this exciting potential application, permanent magnets/magnet arrays have attracted increased attention recently. A magnet/magnet array is strongly associated with the imaging volume of an MRI scanner, image reconstruction methods, and RF excitation and RF coils, etc. through field patterns and field homogeneity. This paper offers a review of permanent magnets and magnet arrays of different kinds, especially those that can be used for spatial encoding towards the development of a portable and low-cost MRI system. It is aimed to familiarize the readers with relevant knowledge, literature, and the latest updates of the development on permanent magnets and magnet arrays for MRI. Perspectives on and challenges of using a permanent magnet/magnet array to supply a patterned static magnetic field, which does not have spatial linearity nor high field homogeneity, for image reconstruction in a portable setup are discussed.

      • KCI등재

        Portable Low-Cost MRI System Based on Permanent Magnets/Magnet Arrays

        Shaoying Huang,Zhi Hua Ren,Sergei Obruchkov,JIa Gong,Robin Dykstra,Wenwei Yu 대한자기공명의과학회 2019 Investigative Magnetic Resonance Imaging Vol.23 No.3

        Portable low-cost magnetic resonance imaging (MRI) systems have the potential to enable “point-of-care” and timely MRI diagnosis, and to make this imaging modality available to routine scans and to people in underdeveloped countries and areas. With simplicity, no maintenance, no power consumption, and low cost, permanent magnets/magnet arrays/magnet assemblies are attractive to be used as a source of static magnetic field to realize the portability and to lower the cost for an MRI scanner. However, when taking the canonical Fourier imaging approach and using linear gradient fields, homogeneous fields are required in a scanner, resulting in the facts that either a bulky magnet/magnet array is needed, or the imaging volume is too small to image an organ if the magnet/magnet array is scaled down to a portable size. Recently, with the progress on image reconstruction based on nonlinear gradient field, static field patterns without spatial linearity can be used as spatial encoding magnetic fields (SEMs) to encode MRI signals for imaging. As a result, the requirements for the homogeneity of the static field can be relaxed, which allows permanent magnets/magnet arrays with reduced sizes, reduced weight to image a bigger volume covering organs such as a head. It offers opportunities of constructing a truly portable low-cost MRI scanner. For this exciting potential application, permanent magnets/magnet arrays have attracted increased attention recently. A magnet/magnet array is strongly associated with the imaging volume of an MRI scanner, image reconstruction methods, and RF excitation and RF coils, etc. through field patterns and field homogeneity. This paper offers a review of permanent magnets and magnet arrays of different kinds, especially those that can be used for spatial encoding towards the development of a portable and low-cost MRI system. It is aimed to familiarize the readers with relevant knowledge, literature, and the latest updates of the development on permanent magnets and magnet arrays for MRI. Perspectives on and challenges of using a permanent magnet/magnet array to supply a patterned static magnetic field, which does not have spatial linearity nor high field homogeneity, for image reconstruction in a portable setup are discussed.

      • SCIESCOPUSKCI등재

        Design and Analysis of a Permanent-Magnet-Assisted Switched Reluctance Motor

        Hongsik Hwang,Jin Hur,Cheewoo Lee 대한전기학회 2014 Journal of Electrical Engineering & Technology Vol.9 No.6

        A permanent-magnet-assisted switched reluctance motor (SRM) having small excitation poles, where phase coils are concentrically wound on the poles and thin permanent magnets are inserted inside the poles, is proposed in this paper. The insertion of permanent magnets into the stator excitation poles has a significant influence on positive torque improvement leading to a boost in efficiency. Three key design parameters such as the thickness of permanent magnets, space between two adjacent permanent magnets, and the width of stator excitation poles are determined during a design procedure in terms of the enhancement of positive torque. Step-by-step design modification and a comparison between the proposed permanent-magnet-assisted SRM and no-permanent-magnet SRM have been conducted by means of static torque comparison along with dynamic performance. The first prototype from steel laminations up to its physical assembly has been constructed.

      • Comparison of magnetic field distributions generated by various permanent magnets for transcranial static magnetic stimulation: A simulation study

        Park, Jimin,Lee, Chany,Lee, Sangjun,Im, Chang-Hwan Elsevier 2019 Computers in biology and medicine Vol.114 No.-

        <P><B>Abstract</B></P> <P>Recent experimental studies have shown that static magnetic field can be effective in modulating human brain functions. Following this discovery, a new noninvasive brain stimulation technique was developed: the transcranial static magnetic stimulation (tSMS). Various types of permanent magnets have been used in previous experimental studies, with the aim of validating the effectiveness of tSMS; nevertheless, the spatial distributions of magnetic field generated by these permanent magnets have not been fully investigated. In this study, we compared the distributions of magnetic field on the human cortical surface generated by five different cylindrical magnets (of various dimensions), using the finite element method. Our simulation results demonstrated that the magnitude of magnetic flux density induced in the cortical grey matter of the human brain is proportional to the volume of permanent magnets used, while the magnetic field gradient is not necessarily proportional to the volume of the magnets. Additionally, we showed that the use of magnets with internal holes might not be advantageous. The differences in magnetic field properties induced by various types of permanent magnets suggested that their careful selection, based on magnetic field simulations, might be necessary to increase the effectiveness of tSMS.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Spatial distributions of magnetic field generated by various permanent magnets for tSMS were investigated. </LI> <LI> A new 3D FEM approach that can readily employ different head models was suggested. </LI> <LI> Slight modification in the shape of permanent magnets considerably alters the magnetic field quantities. </LI> <LI> Cylindrical permanent magnet with a hole is disadvantageous over ones without a hole. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>Brief graphical representation of the overall pipeline for the numerical simulations of magnetic field properties in human cortical grey matter induced by five different permanent magnets.</P> <P>[DISPLAY OMISSION]</P>

      • SCIESCOPUSKCI등재

        Improved Method for Calculating Magnetic Field of Surface-Mounted Permanent Magnet Machines Accounting for Slots and Eccentric Magnet Pole

        Zhou, Yu,Li, Huaishu,Wang, Wei,Cao, Qing,Zhou, Shi The Korean Institute of Electrical Engineers 2015 Journal of Electrical Engineering & Technology Vol.10 No.3

        This paper presented an improved analytical method for calculating the open-circuit magnetic field in the surface-mounted permanent magnet machines accounting for slots and eccentric magnet pole. Magnetic field produced by radial and parallel permanent magnet is equivalent to that produced by surface current according to equivalent surface-current method of permanent magnet. The model is divided into two types of subdomains. The field solution of each subdomain is obtained by applying the interface and boundary conditions. The magnet field produced by equivalent surface current is superposed according to superposition principle of vector potential. The investigation shows harmonic contents of radial flux density can be reduced a lot by changing eccentric distance of eccentric magnet poles compared with conventional surface-mounted permanent-magnet machines with concentric magnet poles. The FE(finite element) results confirm the validity of the analytical results with the proposed model.

      • KCI등재

        Improved Method for Calculating Magnetic Field of Surface-Mounted Permanent Magnet Machines Accounting for Slots and Eccentric Magnet Pole

        Yu Zhou,Huaishu Li,Wei Wang,Qing Cao,Shi Zhou 대한전기학회 2015 Journal of Electrical Engineering & Technology Vol.10 No.3

        This paper presented an improved analytical method for calculating the open-circuit magnetic field in the surface-mounted permanent magnet machines accounting for slots and eccentric magnet pole. Magnetic field produced by radial and parallel permanent magnet is equivalent to that produced by surface current according to equivalent surface-current method of permanent magnet. The model is divided into two types of subdomains. The field solution of each subdomain is obtained by applying the interface and boundary conditions. The magnet field produced by equivalent surface current is superposed according to superposition principle of vector potential. The investigation shows harmonic contents of radial flux density can be reduced a lot by changing eccentric distance of eccentric magnet poles compared with conventional surface-mounted permanent-magnet machines with concentric magnet poles. The FE(finite element) results confirm the validity of the analytical results with the proposed model.

      • KCI등재

        원형 막대자석이 강자성 물체에 작용하는 자기력에 대한 정량적 접근

        현동걸,신애경 한국물리학회 2018 새물리 Vol.68 No.11

        The quantitative representation for the magnetic force of a cylindrical permanent magnet acting on a ferromagnetic cylindrical object was derived on the basis of magnetization theories, and the Gilbert and Ampere models of magnetism. The magnetic force derived in this study is directly proportional to the remanent magnetization magnetic field, the cross-sectional area of the permanent magnet, the saturation magnetic field, and the cross-sectional area of the ferromagnetic object and is inversely proportional to the square of the quantity related to the distance between the permanent magnet and the ferromagnetic object. The magnetic forces of an AlNiCoV cylindrical permanent magnet and a Ferrite cylindrical permanent magnet, both with a radius of 0.4 cm and a length of 7 cm, acting on ferromagnetic objects at distances farther than the radius were calculated to be less than 3.6711 N and 0.1857 N, respectively. 원형 막대자석이 강자성 원형 막대 물체에 작용하는 자기력에 대한 정량적인 표현이 자기화 이론, 자기에 대한 Gilbert 모형, Ampere 모형을 바탕으로 유도되었다. 이 연구에서 유도된 자기력은 원형 막대자석의 잔류 자기화 자기장과 단면적, 강자성 원형 막대 물체의 포화자기장과 단면적에 비례하며, 그리고 이들 사이의 거리에 관계되는 양의 제곱에 반비례한다. 반지름 0.4 cm이고 길이 7 cm인 알니코V 원형 막대자석과 페라이트 원형 막대자석이 반지름 이상 거리에 있는 강자성 물체에 작용하는 자기력은 각각 3.6711 N과 0.1857 N 이하로 계산되었다.

      • KCI등재

        마그네틱 기어의 영구자석 부착방법에 따른 영구자석 와전류손실 분석

        박의종(Eui-Jong Park),김성진(Sung-Jin Kim),정상용(Sang-Yong Jung),김용재(Yong-Jae Kim) 대한전기학회 2017 전기학회논문지 Vol.66 No.6

        Recently, there has been an increasing interest in the non-contact power transmission method of magnetic gears. Since there is no mechanical contact, noise caused by friction can be reduced, and even if a sudden large force is applied, the impact of the gear is close to zero. Further, since the power is transmitted by the magnetic flux, it has high reliability. However, there is a problem that a loss due to a magnetic field due to use of a magnetic flux. The loss caused by the magnetic field of the magnetic gear is a joule loss called eddy current loss. In addition, the eddy current loss in the magnetic gear largely occurs in the permanent magnet, but it is a fatal loss to the permanent magnet which is vulnerable to heat. Particularly, magnetic gears requiring high torque density use NdFeB series permanent magnets, and this permanent magnets have a characteristic in which the magnetic force decreases as temperature increases. Therefore, in this paper, the eddy current loss of the permanent magnet according to the permanent magnet attaching method is analyzed in order to reduce the eddy current loss of the permanent magnet. We have proposed a structure that can reduce the eddy current loss through the analysis and show the effect of reducing the loss of the proposed structure.

      • KCI등재

        유한요소법을 이용한 네오디움 영구자석의 코어 설계

        허관도(Kwan-Do Hur),예상돈(Sang-Don Ye) 한국기계가공학회 2014 한국기계가공학회지 Vol.13 No.5

        Permanent magnets have recently been considered as device that can be used to control the behavior of mechanical systems. Neodymium magnets, a type of permanent magnet, have been used in numerous mechanical devices. These are permanent magnets made from an alloy of neodymium, iron, and boron to form the Nd2Fe14B tetragonal crystalline structure. The magnetic selection, magnet core design and mechanical errors of the magnetic component can affect the performance of the magnetic force. In this study, the coercive force, residual induction, and the dimensions of the design parameters of the magnet core are optimized. The design parameters of magnet core are defined as the gap between the magnet and the core, the upper contact radius, and the lower thickness of the core. The force exercised on a permanent magnet in a non-uniform field is dependent on the magnetization orientation of the magnet. Non-uniformity of the polarization direction of the magnetic has been assumed to be caused by the angular error in the polarization direction. The variation in the magnetic performance is considered according to the center distance, the tilt of the magnetic components, and the polarization direction. The finite element method is used to analyze the magnetic force of an optimized cylindrical magnet.

      • KCI등재

        Design and Implementation of Portable NMR Probe Magnet

        Gao Junxia,Zhang Yiming,Tian Jiashen 한국자기학회 2017 Journal of Magnetics Vol.22 No.1

        The NMR’s probe consists of the static magnetic field generator (magnetic source) and the RF coil. It is very strict for the homogeneity of the static magnetic field intensity of the magnetic source, so the cost of the magnetic source is more expensive in the entire nuclear magnetic resonance instrument. The magnetic source generally consists of electromagnet, permanent magnet and superconducting magnet. The permanent magnet basically needs not to spend on operation and maintenance and its cost of manufacture is much cheaper than the superconducting magnet. Therefore, the permanent magnet may be the only choice for the static magnetic field device if we want to use the magnetic resonance instrument as an analyzer for production by reducing price. A new probe magnet was developed on the basis of the permanent magnet ring in this paper to provide a technological way for reducing the manufacturing cost, weight and volume of the existing nuclear magnetic resonance instrument (including MRI) probe.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼