RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        탄화온도 및 재담금 처리에 따른 중공형 탄소다공체의 기공구조 및 특성

        이은주,이창우,김양도,임영목,Yi, Eunju,Lee, Changwoo,Kim, Yangdo,Rhyim, Youngmok 한국재료학회 2013 한국재료학회지 Vol.23 No.1

        Today, the modification of carbon foam for high performance remains a major issue in the environment and energy industries. One promising way to solve this problem is the optimization of the pore structure for desired properties as well as for efficient performance. In this study, using a sol-gel process followed by carbonization in an inert atmosphere, hollow spherical carbon foam was prepared using resorcinol and formaldehyde precursors catalyzed by 4-aminobenzoic acid; the effect of carbonization temperature and re-immersion treatment on the pore structure and characteristics of the hollow spherical carbon foam was investigated. As the carbonization temperature increased, the porosity and average pore diameter were found to decrease but the compression strength and electrical conductivity dramatically increased in the temperature range of this study ($700^{\circ}C$ to $850^{\circ}C$). The significant differences of X-ray diffraction patterns obtained from the carbon foams carbonized under different temperatures implied that the degree of crystallinity greatly affects the characteristics of the carbon form. Also, the number of re-impregnations of carbon form in the resorcinol-formaldehyde resin was varied from 1 to 10 times, followed by re-carbonization at $800^{\circ}C$ for 2 hours under argon gas flow. As the number of re-immersion treatments increased, the porosity decreased while the compression strength improved by about four times when re-impregnation was repeated 10 times. These results imply the possibility of customizing the characteristics of carbon foam by controlling the carbonization and re-immersion conditions.

      • SCOPUSKCI등재

        Cyclic Voltammetry를 이용한 CuInSe<sub>2</sub> 박막의 전기화학적 전착 연구

        홍순현,이현주,김양도,Hong, Soonhyun,Lee, Hyunju,Kim, Yangdo 한국재료학회 2013 한국재료학회지 Vol.23 No.11

        Chalcopyrite $CuInSe_2$(CIS) is considered to be an effective light-absorbing material for thin film photovoltaic solar cells. CIS thin films have been electrodeposited onto Mo coated and ITO glass substrates in potentiostatic mode at room temperature. The deposition mechanism of CIS thin films has been studied using the cyclic voltammetry (CV) technique. A cyclic voltammetric study was performed in unitary Cu, In, and Se systems, binary Cu-Se and In-Se systems, and a ternary Cu-In-Se system. The reduction peaks of the ITO substrate were examined in separate $Cu^{2+}$, $In^{3+}$, and $Se^{4+}$ solutions. Electrodeposition experiments were conducted with varying deposition potentials and electrolyte bath conditions. The morphological and compositional properties of the CIS thin films were examined by field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). The surface morphology of as-deposited CIS films exhibits spherical and large-sized clusters. The deposition potential has a significant effect on the film morphology and/or grain size, such that the structure tended to grow according to the increase of the deposition potential. A CIS layer deposited at -0.6 V nearly approached the stoichiometric ratio of $CuIn_{0.8}Se_{1.8}$. The growth potential plays an important role in controlling the stoichiometry of CIS films.

      • KCI등재

        이종입자 강화 SiC/Al7075 금속복합재료의 압축특성 및 마모특성 연구

        이동현,조승찬,김양도,이상관,이상복,조일국,Lee, Donghyun,Cho, Seungchan,Kim, Yangdo,Lee, Sang-Kwan,Lee, Sang-Bok,Jo, Ilguk 한국복합재료학회 2017 Composites research Vol.30 No.5

        본 연구에서는 액상가압공정을 통해 고체적율의 SiC 입자가 균일 분산된 알루미늄 금속복합재료를 제조하고, 미세조직, 기계적 특성 및 내마모 특성에 대해 분석하였다. 입자크기가 다른 이종 SiC 입자가 약 60 vol.% 이상의 체적율로 균일하게 분산된 SiC/Al7075 복합재료는 단일 SiC 입자로 강화된 복합재료에 비해 체적율이 약 12% 이상 높았으며 압축강도가 200 MPa 이상 증가하였다. 내마모시험 결과 이종 SiC 입자 금속복합재료의 경우 마모너비와 깊이가 각각 $285.1{\mu}m$, $0.45{\mu}m$이며, 마찰계수는 0.16으로 내마모 특성이 가장 우수하였다. In this study, we have investigated microstructure, mechanical properties and wear characteristic of aluminum metal matrix composites with a high volume fraction and uniformly dispersed SiC particles which produced by a liquid pressing process. The volume fraction of bimodal SiC/Al7075 composite was 12% higher than that of the monomodal SiC/Al7075 composite and a compressive strength is increased about 200 MPa. As a result of the abrasion test, the wear width and depth of the bimodal SiC/Al7075 composite were $285.1{\mu}m$ and $0.45{\mu}m$, respectively. The coefficient of friction of bimodal SiC/Al7075 was 0.16.

      • KCI등재

        고다공성 카본 에어로젤(C-Aerogel) 표면 특성

        지혜(Ji-Hye Kim),이창래(Chang Rae Lee),정용수(Youngsoo Jeong),김양도(Yangdo Kim),인배(In-Bae Kim) 한국표면공학회 2008 한국표면공학회지 Vol.41 No.3

        The pyrolysized carbon xerogel and aerogels were prepared from the sol-gel polymerization of resorcinolformaldehyde(RF) followed by the dry process under ambient pressure and supercritical carbon dioxide condition respectively. The thermal behaviour of RF polymer xerogel was investigated with TGA analyzer to correspond with the pyrolysis process. The surface properties such as particle size, morphology and the point of zero charge of the pyrolysized porous carbon aerogels were studied for the precious metal catalyst supported media. It was found that the volume of the polymer aerogel decreased because of the significant linear shrinkage and weight loss of polymer gel during the carbonization. The point of zero charge of the carbon aerogel pyrolysized at 1050℃ under inert gas flow was about 10.

      • KCI등재

        CO<sub>2</sub> 하이드레이트의 film형 결정성장 거동에 관한 연구

        이현주,수민,이주동,김양도,Lee, Hyunju,Kim, Soomin,Lee, Ju-Dong,Kim, Yangdo 한국결정성장학회 2013 한국결정성장학회지 Vol.23 No.2

        지구 온난화의 대표적인 주범인 $CO_2$를 저감하기 위하여 많은 연구가 진행되고 있다. 특히 가스 하이드레이트 형성원리를 이용한 $CO_2$ 분리 및 저장 공정이 주목을 받고 있다. 본 연구는 필름형 $CO_2$ 하이드레이트의 결정성장 거동에 관하여 성장 메커니즘을 규명하였다. 다양한 압력조건에서 반회분식 교반 반응기를 이용하여 $CO_2$ 하이드레이트를 형성시켰으며 객체가스의 용해도 차이를 최소화하기 위하여 모든 실험에서 온도는 고정하였다. 공급된 가스는 순도 99.999 %의 $CO_2$ 가스를 사용하였고, CCD 카메라(Nikon DS-5M/Fi1/2M-U2)가 장착된 광학현미경을 사용하여 관찰 결과를 실시간 기록하였다. 실험에 적용되는 압력에 따라서 하이드레이트 성장형태와 성장속도는 매우 큰 차이를 보였다. 특히 2.0 MPa 이상의 압력에서 가장 큰 변화를 관찰하였으며, 이것은 $CO_2$의 농도 차이와 모세관 힘에 의한 것으로 사료된다. Many researches have been carried out to reduce and/or to capture the major global warming gases. Especially, the hydrate formation mechanisms were intensively investigated for carbon dioxide sequestration and storage process applications. In this study, the characteristics of film-type crystal growth mechanism of carbon dioxide hydrate were comprehensively examined. Carbon dioxide hydrate crystal was formed in semi-batch type stir reactor at various pressure conditions while the temperature was fixed to be constant to reduce and minimize the guest gas solubility effects. A supply gas composition was 99.999 % of Carbon dioxide, the observation data was collected by optical microscope adopted CCD camera (Nikon DS-5M/Fi1/2M-U2). This study revealed that the guest gas pressure changes significantly altered the crystal growth mechanism and film growth rate of carbon dioxide hydrate crystal. The critical pressure of the carbon dioxide hydrate of crystal growth mechanism change was found to be 2.0 MPa. The capillary force and gas concentration gradient also significantly changed the film-type crystal growth mechanism of carbon dioxide hydrate crystal.

      • KCI등재

        실리콘 관통형 Via(TSV)의 Seed Layer 증착 및 Via Filling 특성

        이현주,최만호,권세훈,이재호,김양도,Lee, Hyunju,Choi, Manho,Kwon, Se-Hun,Lee, Jae-Ho,Kim, Yangdo 한국재료학회 2013 한국재료학회지 Vol.23 No.10

        As continued scaling becomes increasingly difficult, 3D integration has emerged as a viable solution to achieve higher bandwidths and good power efficiency. 3D integration can be defined as a technology involving the stacking of multiple processed wafers containing integrated circuits on top of each other with vertical interconnects between the wafers. This type of 3D structure can improve performance levels, enable the integration of devices with incompatible process flows, and reduce form factors. Through silicon vias (TSVs), which directly connect stacked structures die-to-die, are an enabling technology for future 3D integrated systems. TSVs filled with copper using an electro-plating method are investigated in this study. DC and pulses are used as a current source for the electro-plating process as a means of via filling. A TiN barrier and Ru seed layers are deposited by plasma-enhanced atomic layer deposition (PEALD) with thicknesses of 10 and 30 nm, respectively. All samples electroplated by the DC current showed defects, even with additives. However, the samples electroplated by the pulse current showed defect-free super-filled via structures. The optimized condition for defect-free bottom-up super-filling was established by adjusting the additive concentrations in the basic plating solution of copper sulfate. The optimized concentrations of JGB and SPS were found to be 10 and 20 ppm, respectively.

      • KCI등재

        습식 교반 및 방전 플라즈마 소결 공정에 의한 CNT 분산 Cu 복합재료 제조

        조승찬,조일국,이상복,이상관,최문희,박재홍,권한상,김양도,Cho, Seungchan,Jo, Ilguk,Lee, Sang-Bok,Lee, Sang-Kwan,Choi, Moonhee,Park, Jehong,Kwon, Hansang,Kim, Yangdo 한국분말야금학회 2018 한국분말재료학회지 (KPMI) Vol.25 No.2

        Multi-walled carbon nanotube (MWCNT)-copper (Cu) composites are successfully fabricated by a combination of a binder-free wet mixing and spark plasma sintering (SPS) process. The SPS is performed under various conditions to investigate optimized processing conditions for minimizing the structural defects of CNTs and densifying the MWCNT-Cu composites. The electrical conductivities of MWCNT-Cu composites are slightly increased for compositions containing up to 1 vol.% CNT and remain above the value for sintered Cu up to 2 vol.% CNT. Uniformly dispersed CNTs in the Cu matrix with clean interfaces between the treated MWCNT and Cu leading to effective electrical transfer from the treated MWCNT to the Cu is believed to be the origin of the improved electrical conductivity of the treated MWCNT-Cu composites. The results indicate the possibility of exploiting CNTs as a contributing reinforcement phase for improving the electrical conductivity and mechanical properties in the Cu matrix composites.

      • SCOPUSKCI등재

        Sol-Gel법을 이용한 Cu<sub>x</sub>Co<sub>3-x</sub>O<sub>4</sub> 산소 발생 촉매의 합성 및 전기화학 특성 분석

        박유세,정창욱,치호,구태우,석창규,권일영,김양도,Park, Yoo Sei,Jung, Changwook,Kim, Chiho,Koo, Taewoo,Seok, Changgyu,Kwon, Ilyeong,Kim, Yangdo 한국재료학회 2019 한국재료학회지 Vol.29 No.2

        Transition metal oxide is widely used as a water electrolysis catalyst to substitute for a noble metal catalyst such as $IrO_2$ and $RuO_2$. In this study, the sol-gel method is used to synthesize the $Cu_xCo_{3-x}O_4$ catalyst for the oxygen evolution reaction (OER),. The CuxCo3-xO4 is synthesized at various calcination temperatures from $250^{\circ}C$ to $400^{\circ}C$ for 4 h. The $Cu_xCo_{3-x}O_4$ synthesized at $300^{\circ}C$ has a perfect spinel structure without residues of the precursor and secondary phases, such as CuO. The particle size of $Cu_xCo_{3-x}O_4$ increases with an increase in calcination temperature. Amongst all the samples studied, $Cu_xCo_{3-x}O_4$, which is synthesized at 300?, has the highest activity for the OER. Its onset potential for the OER is 370 mV and the overpotential at $10mA/cm^2$ is 438 mV. The tafel slope of $Cu_xCo_{3-x}O_4$ synthesized at $300^{\circ}C$ has a low value of 58 mV/dec. These results are mainly explained by the increase in the available active surface area of the $Cu_xCo_{3-x}O_4$ catalyst.

      • KCI등재

        탄소나노튜브로 표면처리 된 탄소섬유/에폭시 수지 복합재료의 기계적 특성 연구

        홍은미(Eunmi Hong),이규환(Kyuhwan Lee),김양도(Yangdo Kim),임동찬(Dongchan Lim) 한국표면공학회 2013 한국표면공학회지 Vol.46 No.5

        In this work, the grow of carbon nanotube (CNT) on carbon fiber was introduced on PAN-based carbon fibers for the enhancement of mechanical interfacial strength of carbon fibers-reinforced composites. The surface properties of carbon fibers were determined by scanning electron microscopy (SEM) and mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS). From the results, it was found that the mechanical interfacial properties of CNT-carbon fibers-reinforced composites (CNTCFRPs) enhanced with decreasing the CNT content. The excessive CNT content can lead the failure due to the interfacial separation between fibers and matrices in this system. In conclusion, the optimum CNT content on carbon fiber surfaces can be a key factor to determine the mechanical interfacial properties of the CNT-CFRPs.

      • KCI등재

        DC, pulse 조건에 따른 구리 도금층 미세 조직 관찰

        윤지숙,박찬수,홍순현,이현주,이승준,김양도,Yoon, Jisook,Park, Chansu,Hong, Soonhyun,Lee, Hyunju,Lee, Seungjun,Kim, Yangdo 한국재료학회 2014 한국재료학회지 Vol.24 No.2

        The aim of this work was to investigate the effects of electrodeposition conditions on the microstructural characteristics of copper thin films. The microstructure of electroplated Cu films was found to be highly dependent on electrodeposition conditions such as system current and current density, as well as the bath solution itself. The current density significantly changed the preferred orientation of electroplated Cu films in a DC system, while the solution itself had very significant effects on microstructural characteristics in a pulse-reverse pulse current system. In the DC system, polarization at high current above 30 mA, changed the preferred orientation of Cu films from (220) to (111). However, Cu films showed (220) preferred orientation for all ranges of current density in the pulse-reverse pulse current system. The grain size decreased with increasing current density in the DC system while it remained relatively constant in the pulse-reverse pulse current system. The sheet resistance increased with increasing current density in the DC system due to the decreased grain size.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼