RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Formation Mechanism Analysis and Detection of Charged Particles in an Aero-engine Gas Path

        Wen, Zhenhua,Hou, Junxing,Jiang, ZhiQiang The Korean Society for Aeronautical and Space Scie 2015 International Journal of Aeronautical and Space Sc Vol.16 No.2

        The components of an aero-engine gas path cannot be monitored in a timely way due to a lack of real-time monitoring technologies. As an attempt to address this problem, we have conducted research on a condition monitoring technology based on the charging characteristics of particles in an aero-engine gas path, and emphatically analyze the formation of particles in an aero-engine gas path, the charging mechanism of carbon particles and the factors that influence the charge quantity and polarity. The verification experiments are performed on the simulated experiment platform and a turbo-shaft engine test bench. The results show the carbon particles' carry charge, and an obvious change in the total electrostatic charge level in the aero-engine gas path due to the increased carbon particles produced by burning or abnormal metal particles; the charge number is related to the size of particles, and the bigger carbon particles carry a negative charge and metal particles carry a positive charge; the change in engine power can lead to an obvious change in the level of electrostatic charge in the gas path, and the change in electrostatic charge results from the extra carbon particles formed in the rich-oil burning process. The research provides a reference for establishing the baseline of electrostatic charge while the engine runs on different power. The study also demonstrates the validity of the electrostatic monitoring technology and establishes a base for developing the application of electrostatic monitoring technology in aero-engines.

      • KCI등재

        Formation Mechanism Analysis and Detection of Charged Particles in an Aero-engine Gas Path

        Zhenhua Wen,Junxing Hou,ZhiQiang Jiang 한국항공우주학회 2015 International Journal of Aeronautical and Space Sc Vol.16 No.2

        The components of an aero-engine gas path cannot be monitored in a timely way due to a lack of real-time monitoring technologies. As an attempt to address this problem, we have conducted research on a condition monitoring technology based on the charging characteristics of particles in an aero-engine gas path, and emphatically analyze the formation of particles in an aero-engine gas path, the charging mechanism of carbon particles and the factors that influence the charge quantity and polarity. The verification experiments are performed on the simulated experiment platform and a turbo-shaft engine test bench. The results show the carbon particles’ carry charge, and an obvious change in the total electrostatic charge level in the aero-engine gas path due to the increased carbon particles produced by burning or abnormal metal particles; the charge number is related to the size of particles, and the bigger carbon particles carry a negative charge and metal particles carry a positive charge; the change in engine power can lead to an obvious change in the level of electrostatic charge in the gas path, and the change in electrostatic charge results from the extra carbon particles formed in the rich-oil burning process. The research provides a reference for establishing the baseline of electrostatic charge while the engine runs on different power. The study also demonstrates the validity of the electrostatic monitoring technology and establishes a base for developing the application of electrostatic monitoring technology in aero-engines.

      • KCI등재

        Observer-based Controller Design for A T-S Fuzzy System with Unknown Premise Variables

        Wen-Bo Xie,He Li,Zhenhua Wang,Jian Zhang 제어·로봇·시스템학회 2019 International Journal of Control, Automation, and Vol.17 No.4

        For the stabilization problem of T-S fuzzy system, a new observer-based controller design approachis proposed when premise variables are not accessible. With a fuzzy observer, the estimated states error system isdescribed as two parts: unknown premise variable caused terms and observer error terms. Consider the property thatthe norm of the unknown premise variable caused terms are under a Lipschitz condition constraint of observer error,an observer and controller errors augmented system is obtained. Then based on the Lyapunov function method, aseries of linear matrix inequality conditions are proposed to asymptotically stabilize the system, the observer gainmatrices are used to overcome the uncertainties caused by UPVs. Finally a simulation example is used to illustratethe effectiveness of the proposed method, comparisons with traditional method shows the conservatism reductioneffects.

      • KCI등재

        Inhibition of lncRNA KCNQ1OT1 Improves Apoptosis and Chemotherapy Drug Response in Small Cell Lung Cancer by TGF-β1 Mediated Epithelial-to-Mesenchymal Transition

        Deyu Li,Qin Tong,Yuane Lian,Zhizhong Chen,Yaru Zhu,Weimei Huang,Yang Wen,Qiongyao Wang,Shumei Liang,Man Li,Jianjing Zheng,Zhenhua Liu,Huanxin Liu,Linlang Guo 대한암학회 2021 Cancer Research and Treatment Vol.53 No.4

        Purpose Drug resistance is one of the main causes of chemotherapy failure in patients with small cell lung cancer (SCLC), and extensive biological studies into chemotherapy drug resistance are required. Materials and Methods In this study, we performed lncRNA microarray, in vitro functional assays, in vivo models and cDNA microarray to evaluate the impact of lncRNA in SCLC chemoresistance. Results The results showed that KCNQ1OT1 expression was upregulated in SCLC tissues and was a poor prognostic factor for patients with SCLC. Knockdown of KCNQ1OT1 inhibited cell proliferation, migration, chemoresistance and promoted apoptosis of SCLC cells. Mechanistic investigation showed that KCNQ1OT1 can activate transforming growth factor-β1 mediated epithelial-to-mesenchymal transition in SCLC cells. Conclusion Taken together, our study revealed the role of KCNQ1OT1 in the progression and chemoresistance of SCLC, and suggested KCNQ1OT1 as a potential diagnostic and prognostic biomarker in SCLC clinical management.

      • KCI등재

        Elevated TRAF4 expression impaired LPS-induced autophagy in mesenchymal stem cells from ankylosing spondylitis patients

        Jinteng Li,Peng Wang,Zhongyu Xie,Rui Yang,Yuxi Li,Xiaohua Wu,Hongjun Su,Wen Deng,Shan Wang,Zhenhua Liu,Shuizhong Cen,Yi Ouyang,Yanfeng Wu,Huiyong Shen 생화학분자생물학회 2017 Experimental and molecular medicine Vol.49 No.-

        Ankylosing spondylitis (AS) is a type of autoimmune disease that predominantly affects the spine and sacroiliac joints. However, the pathogenesis of AS remains unclear. Some evidence indicates that infection with bacteria, especially Gram-negative bacteria, may have an important role in the onset and progression of AS. Recently, many studies have demonstrated that mesenchymal stem cells (MSCs) dysfunction may contribute to the pathogenesis of many rheumatic diseases. We previously demonstrated that MSCs from AS patients exhibited markedly enhanced osteogenic differentiation capacity in vitro under non-inflammatory conditions. However, the properties of MSCs from AS patients in an inflammatory environment have never been explored. Lipopolysaccharide (LPS), a proinflammatory substance derived from the outer membrane of Gram-negative bacteria, can alter the status and function of MSCs. However, whether MSCs from AS patients exhibit abnormal responses to LPS stimulation has not been reported. Autophagy is a lysosome-mediated catabolic process that participates in many physiological and pathological processes. The link between autophagy and AS remains largely unknown. The level of autophagy in ASMSCs after LPS stimulation remains to be addressed. In this study, we demonstrated that although the basal level of autophagy did not differ between MSCs from healthy donors (HDMSCs) and ASMSCs, LPS-induced autophagy was weaker in ASMSCs than in HDMSCs. Specifically, increased TRAF4 expression in ASMSCs impaired LPS-induced autophagy, potentially by inhibiting the phosphorylation of Beclin-1. These data may provide further insight into ASMSC dysfunction and the precise mechanism underlying the pathogenesis of AS.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼