RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        LincR-PPP2R5C Promotes Th2 Cell Differentiation Through PPP2R5C/PP2A by Forming an RNA–DNA Triplex in Allergic Asthma

        Ji Ningfei,Chen Zhongqi,Wang Zhengxia,Sun Wei,Yuan Qi,Zhang Xijie,Jia Xinyu,Wu Jingjing,Jiang Jingxian,Song Meijuan,Xu Tingting,Liu Yanan,Ma Qiyun,Sun Zhixiao,Bao Yanmin,Zhang Mingshun,Huang Mao 대한천식알레르기학회 2024 Allergy, Asthma & Immunology Research Vol.16 No.1

        Purpose: The roles and mechanisms of long noncoding RNAs (lncRNAs) in T helper 2 (Th2) differentiation from allergic asthma are poorly understood. We aimed to explore a novel lncRNA, LincR-protein phosphatase 2 regulatory subunit B' gamma (PPP2R5C), in Th2 differentiation in a mouse model of asthma. Methods: LincR-PPP2R5C from RNA-seq data of CD4+ T cells of asthma-like mice were validated and confirmed by quantitative reverse transcription polymerase chain reaction, northern blotting, nuclear and cytoplasmic separation, and fluorescence in situ hybridization (FISH). Lentiviruses encoding LincR-PPP2R5C or shRNA were used to overexpress or silence LincR-PPP2R5C in CD4+ T cells. The interactions between LincR-PPP2R5C and PPP2R5C were explored with western blotting, chromatin isolation by RNA purification assay, and fluorescence resonance energy transfer. An ovalbumin-induced acute asthma model in knockout (KO) mice (LincR-PPP2R5C KO, CD4 conditional LincR-PPP2R5C KO) was established to explore the roles of LincR-PPP2R5C in Th2 differentiation. Results: LncR-PPP2R5C was significantly higher in CD4+ T cells from asthmatic mice ex vivo and Th2 cells in vitro. The lentivirus encoding LincR-PPP2R5C suppressed Th1 differentiation; in contrast, the short hairpin RNA (shRNA) lentivirus decreased LincR-PPP2R5C and Th2 differentiation. Mechanistically, LincR-PPP2R5C deficiency suppressed the phosphatase activity of the protein phosphatase 2A (PP2A) holocomplex, resulting in a decline in Th2 differentiation. The formation of an RNA-DNA triplex between LincR-PPP2R5C and the PPP2R5C promoter enhanced PPP2R5C expression and activated PP2A. LincR-PPP2R5C KO and CD4 conditional KO decreased Th2 differentiation, airway hyperresponsiveness and inflammatory responses. Conclusions: LincR-PPP2R5C regulated PPP2R5C expression and PP2A activity by forming an RNA-DNA triplex with the PPP2R5C promoter, leading to Th2 polarization in a mouse model of acute asthma. Our data presented the first definitive evidence of lncRNAs in the regulation of Th2 cells in asthma.

      • KCI등재

        IL-33 Promotes ST2-Dependent Fibroblast Maturation via P38 and TGF-β in a Mouse Model of Epidural Fibrosis

        Wang Haoran,Wu Tao,Hua Feng,Sun Jinpeng,Bai Yunfeng,Wang Weishun,Liu Jun,Zhang Mingshun 한국조직공학과 재생의학회 2022 조직공학과 재생의학 Vol.19 No.3

        BACKGROUND: Recent evidence suggests that IL-33, a novel member of the IL-1b family, is involved in organ fibrosis. However, the roles of IL-33 and its receptor ST2 in epidural fibrosis post spine operation remain elusive. METHODS: A mouse model of epidural fibrosis was established after laminectomy. IL-33 in the wound tissues post laminectomy was measured with Western blotting, ELISA and immunoflurosence imaging. The fibroblast cell line NIH- 3T3 and primary fibroblasts were treated with IL-33 and the mechanisms of maturation of fibroblasts into myofibroblasts were analyzed. To explore roles of IL-33 and its receptor ST2 in vivo, IL-33 knockout (KO) and ST2 KO mice were employed to construct the model of laminectomy. The epidural fibrosis was evaluated using H&E and Masson staining, western-blotting, ELISA and immunohistochemistry. RESULTS: As demonstrated in western blotting and ELISA, IL-33 was increased in epidural wound tissues post laminectomy. The immunoflurosence imaging revealed that endothelial cells (CD31?) and fibroblasts (a-SAM?) were major producers of IL-33 in the epidural wound tissues. In vitro, IL-33 promoted fibroblast maturation, which was blocked by ST2 neutralization antibody, suggesting that IL-33-promoted-fibroblasts maturation was ST2 dependent. Further, IL-33/ ST2 activated MAPK p38 and TGF-b pathways. Either p38 inhibitor or TGF-b inhibitor decreased fibronectin and a-SAM production from IL-33-treated fibroblasts, suggesting that p38 and TGF-b were involved with IL-33/ST2 signal pathways in the fibroblasts maturation. In vivo, IL-33 KO or ST2 KO decreased fibronectin, a-SMA and collagen deposition in the wound tissues of mice that underwent spine surgery. In addition, TGF-b1 was decreased in IL-33 KO or ST2 KO epidural wound tissues. CONCLUSION: In summary, IL-33/ST2 promoted fibroblast differentiation into myofibroblasts via MAPK p38 and TGFb in a mouse model of epidural fibrosis after laminectomy.

      • KCI등재

        MiR-1165-3p Suppresses Th2 Differentiation via Targeting IL-13 and PPM1A in a Mouse Model of Allergic Airway Inflammation

        Zhengxia Wang,Ningfei Ji,Zhongqi Chen,Zhixiao Sun,Chaojie Wu,Wenqing Yu,Fan Hu,Mao Huang,Mingshun Zhang 대한천식알레르기학회 2020 Allergy, Asthma & Immunology Research Vol.12 No.5

        Purpose: CD4+T cells are essential in the pathogenesis of allergic asthma. We have previously demonstrated that microRNA-1165-3p (miR-1165-3p) was significantly reduced in T-helper type (Th) 2 cells and that miR-1165-3p was a surrogate marker for atopic asthma. Little is known about the mechanisms of miR-1165-3p in the regulation of Th2-dominated allergic inflammation. We aimed to investigate the associations between Th2 differentiation and miR-1165b-3p in asthma as well as the possible mechanisms. Methods: CD4+ naïve T cells were differentiated into Th1 or Th2 cells in vitro. MiR-1165-3p was up-regulated or down-regulated using lentiviral systems during Th1/Th2 differentiation. In vivo, the lentiviral particles with the miR-1165-3p enhancer were administered by tail vein injection on the first day of a house dust mite -induced allergic airway inflammation model. Allergic inflammation and Th1/Th2 differentiation were routinely monitored. To investigate the potential targets of miR-1165-3p, biotin-microRNA pull-down products were sequenced, and the candidates were further verified with a dual-luciferase reporter assay. The roles of a target protein phosphatase, Mg2+/Mn2+-dependent 1A (PPM1A), in Th2 cell differentiation and allergic asthma were further explored. Plasma PPM1A was determined by ELISA in 18 subjects with asthma and 20 controls. Results: The lentivirus encoding miR-1165-3p suppressed Th2-cell differentiation in vitro. In contrast, miR-1165-3p silencing promoted Th2-cell development. In the HDM-induced model of allergic airway inflammation, miR-1165-3p up-regulation was accompanied by reduced airway hyper-responsiveness, serum immunoglobulin E, airway inflammation and Th2-cell polarization. IL-13 and PPM1A were the direct targets of miR-1165-3p. The expression of IL-13 or PPM1A was inversely correlated with that of miR-1165-3p. PPM1A regulated the signal transducer and activator of transcription and AKT signaling pathways during Th2 differentiation. Moreover, plasma PPM1A was significantly increased in asthmatic patients. Conclusions: MiR-1165-3p negatively may regulate Th2-cell differentiation by targeting IL-13 and PPM1A in allergic airway inflammation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼