RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Plasma-assisted synthesis of bicrystalline ZnS nanobelts with enhanced photocatalytic ability

        Qiushi Wang,Junhong Li,Wei Zhang,Min Zhong 대한금속·재료학회 2020 ELECTRONIC MATERIALS LETTERS Vol.16 No.2

        ZnS nanobelts have been synthesized by a reaction of Zn and S powders using the simple arc discharge method. The productswere characterized using X-ray diff raction, Raman spectroscopy, scanning and transmission electron microscopy, as wellas energy-dispersive X-ray spectrometer. The results reveal that the ZnS nanobelts exhibit bicrystalline nanostructure. Theroles of ion bombardment and plasma species in the growth of bicrystalline ZnS nanobelts are discussed. The ZnS nanobeltsexhibit strong emission peaked at 516 nm under a 373 nm UV light excitation and excellent photocatalytic ability fordegradation of methylene blue. This work represents a new strategy to synthesize bicrystalline nanostructures for design ofoptoelectronic nanodevices and photocatalysts.

      • KCI등재후보

        MiRNA320a Inhibitor-Loaded PLGA-PLL-PEG Nanoparticles Contribute to Bone Regeneration in Trauma-Induced Osteonecrosis Model of the Femoral Head

        Zhang Ying,Li Chuan,Wei Qiushi,Yuan Qiang,He Wei,Zhang Ning,Dong Yiping,Jing Zhenhao,Zhang Leilei,Wang Haibin,Cao Xiangyang 한국조직공학과 재생의학회 2024 조직공학과 재생의학 Vol.21 No.1

        BACKGROUND: This study aimed to explore the effect of a nanomaterial-based miR-320a inhibitor sustained release system in trauma-induced osteonecrosis of the femoral head (TIONFH). METHODS: The miR-320a inhibitor-loaded polyethylene glycol (PEG)- Poly(lactic-co-glycolic acid) (PLGA)- Poly-L-lysine (PLL) nanoparticles were constructed using the double emulsion method. The TIONFH rabbit model was established to observe the effects of miR-320a inhibitor nanoparticles in vivo. Hematoxylin–eosin staining and microcomputed tomography scanning were used for bone morphology analysis. Bone marrow mesenchymal stem cells (BMSCs), derived from TIONFH rabbits, were used for in vitro experiments. Cell viability was determined using the MTT assay. RESULTS: High expression of miR-320a inhibited the osteogenic differentiation capacity of BMSCs in vitro by inhibiting the expression of the osteoblastic differentiation markers ALP and RUNX2. MiR-320a inhibitor-loaded PEG-PLGA-PLL nanoparticles were constructed with a mean loading efficiency of 1.414 ± 0.160%, and a mean encapsulation efficiency of 93.45 ± 1.24%, which released 50% of the loaded miR-320a inhibitor at day 12 and 80% on day 18. Then, inhibitor release entered the plateau. After treatment with the miR-320a inhibitor nanoparticle, the empty lacunae were decreased in the femoral head tissue of TIONFH rabbits, and the osteoblast surface/bone surface (Ob.S/BS), osteoblast number/bone perimeter (Ob.N/B.Pm), bone volume fraction, and bone mineral density increased. Additionally, the expression of osteogenic markers RUNX2 and ALP was significantly elevated in the TIONFH rabbit model. CONCLUSION: The miR-320a inhibitor-loaded PEG-PLGA-PLL nanoparticle sustained drug release system significantly contributed to bone regeneration in the TIONFH rabbit model, which might be a promising strategy for the treatment of TIONFH. BACKGROUND: This study aimed to explore the effect of a nanomaterial-based miR-320a inhibitor sustained release system in trauma-induced osteonecrosis of the femoral head (TIONFH). METHODS: The miR-320a inhibitor-loaded polyethylene glycol (PEG)- Poly(lactic-co-glycolic acid) (PLGA)- Poly-L-lysine (PLL) nanoparticles were constructed using the double emulsion method. The TIONFH rabbit model was established to observe the effects of miR-320a inhibitor nanoparticles in vivo. Hematoxylin–eosin staining and microcomputed tomography scanning were used for bone morphology analysis. Bone marrow mesenchymal stem cells (BMSCs), derived from TIONFH rabbits, were used for in vitro experiments. Cell viability was determined using the MTT assay. RESULTS: High expression of miR-320a inhibited the osteogenic differentiation capacity of BMSCs in vitro by inhibiting the expression of the osteoblastic differentiation markers ALP and RUNX2. MiR-320a inhibitor-loaded PEG-PLGA-PLL nanoparticles were constructed with a mean loading efficiency of 1.414 ± 0.160%, and a mean encapsulation efficiency of 93.45 ± 1.24%, which released 50% of the loaded miR-320a inhibitor at day 12 and 80% on day 18. Then, inhibitor release entered the plateau. After treatment with the miR-320a inhibitor nanoparticle, the empty lacunae were decreased in the femoral head tissue of TIONFH rabbits, and the osteoblast surface/bone surface (Ob.S/BS), osteoblast number/bone perimeter (Ob.N/B.Pm), bone volume fraction, and bone mineral density increased. Additionally, the expression of osteogenic markers RUNX2 and ALP was significantly elevated in the TIONFH rabbit model. CONCLUSION: The miR-320a inhibitor-loaded PEG-PLGA-PLL nanoparticle sustained drug release system significantly contributed to bone regeneration in the TIONFH rabbit model, which might be a promising strategy for the treatment of TIONFH.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼