RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Colorectal Cancer and its Association with the Metabolic Syndrome: a Malaysian Multi-Centric Case-Control Study

        Ulaganathan, V.,Kandiah, M.,Zalilah, M.S.,Faizal, J.A.,Fijeraid, H.,Normayah, K.,Gooi, B.H.,Othman, R. Asian Pacific Journal of Cancer Prevention 2012 Asian Pacific journal of cancer prevention Vol.13 No.8

        Objective: Colorectal cancer (CRC) and the metabolic syndrome (MetS) are both on the rise in Malaysia. A multi-centric case-control study was conducted from December 2009 to January 2011 to determine any relationship between the two. Methods: Patients with confirmed CRC based on colonoscopy findings and cancer free controls from five local hospitals were assessed for MetS according to the International Diabetes Federation (IDF) definition. Each index case was matched for age, gender and ethnicity with two controls (140: 280). Results: MetS among cases was highly prevalent (70.7%), especially among women (68.7%). MetS as an entity increased CRC risk by almost three fold independently (OR=2.61, 95%CI=1.53-4.47). In men MetS increased the risk of CRC by two fold (OR=2.01, 95%CI, 1.43-4.56), demonstrating an increasing trend in risk with the number of Mets components observed. Conclusion: This study provides evidence fora positive association between the metabolic syndrome and colorectal cancer. A prospective study on the Malaysian population is a high priority to confirm these findings.

      • KCI등재

        Transport, structural and thermal studies on nanocomposite polymer blend electrolytes for Li-ion battery applications

        S. Rajendran,K. Kesavan,R. Nithya,M. Ulaganathan 한국물리학회 2012 Current Applied Physics Vol.12 No.3

        Nanocomposite polymer electrolytes (NCPEs) composed of poly(vinylidenefluoride-co-hexafluoropropylene)(PVdF-co-HFP) as a host polymer, Poly(vinyl acetate) (PVAc) as an additive, Ethylene Carbonate (EC) as a plasticizer, Lithium Perchlorate as dopant salt and Barium Titanate (BaTiO3) as a filler were prepared for various concentrations of BaTiO3 using solvent casting technique. Thermal stability of the sample having maximum ionic conductivity was found using TG/DTA analysis. Nano composite polymer electrolytes were subjected to ac impedance analysis spectra for acquiring the ionic conductivity values at different temperature. Surface structure of the sample was analysed using scanning electron microscope and the complexations of samples were analysed using X-ray diffraction analysis. It was noted that the polymer electrolyte contains 8 wt. % of BaTiO3 showed maximumionic conductivity than the other ratios of BaTiO3.

      • KCI등재후보

        Chromosome-specific polymorphic SSR markers in tropical eucalypt species using low coverage whole genome sequences: systematic characterization and validation

        Patturaj, Maheswari,Munusamy, Aiswarya,Kannan, Nithishkumar,Kandasamy, Ulaganathan,Ramasamy, Yasodha Korea Genome Organization 2021 Genomics & informatics Vol.19 No.3

        Eucalyptus is one of the major plantation species with wide variety of industrial uses. Polymorphic and informative simple sequence repeats (SSRs) have broad range of applications in genetic analysis. In this study, two individuals of Eucalyptus tereticornis (ET217 and ET86), one individual each from E. camaldulensis (EC17) and E. grandis (EG9) were subjected to whole genome resequencing. Low coverage (10×) genome sequencing was used to find polymorphic SSRs between the individuals. Average number of SSR loci identified was 95,513 and the density of SSRs per Mb was from 157.39 in EG9 to 155.08 in EC17. Among all the SSRs detected, the most abundant repeat motifs were di-nucleotide (59.6%-62.5%), followed by tri- (23.7%-27.2%), tetra- (5.2%-5.6%), penta- (5.0%-5.3%), and hexa-nucleotide (2.7%-2.9%). The predominant SSR motif units were AG/CT and AAG/TTC. Computational genome analysis predicted the SSR length variations between the individuals and identified the gene functions of SSR containing sequences. Selected subset of polymorphic markers was validated in a full-sib family of eucalypts. Additionally, genome-wide characterization of single nucleotide polymorphisms, InDels and transcriptional regulators were carried out. These variations will find their utility in genome-wide association studies as well as understanding of molecular mechanisms involved in key economic traits. The genomic resources generated in this study would provide an impetus to integrate genomics in marker-trait associations and breeding of tropical eucalypts.

      • A chemically bonded NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>/rGO microsphere composite as a high-rate insertion anode for sodium-ion capacitors

        Roh, Ha-Kyung,Kim, Myeong-Seong,Chung, Kyung Yoon,Ulaganathan, Mani,Aravindan, Vanchiappan,Madhavi, Srinivasan,Roh, Kwang Chul,Kim, Kwang-Bum The Royal Society of Chemistry 2017 Journal of materials chemistry. A, Materials for e Vol.5 No.33

        <▼1><P>We report on the synthesis of a high rate NaTi2(PO4)3/graphene composite for use as an anode material for constructing high power Na-ion hybrid capacitors.</P></▼1><▼2><P>We report on the synthesis of a high rate NaTi2(PO4)3/graphene composite for use as an anode material for high power Na-ion hybrid capacitors with the following characteristics; (1) reduction of the particle size of NaTi2(PO4)3 to the nanometer scale in order to reduce the Na<SUP>+</SUP> ion diffusion length, (2) chemical bonding between NaTi2(PO4)3 nanoparticles and graphene in order to improve electrical conductivity, and (3) interconnected nanoporous structures in order to allow easy access of Na<SUP>+</SUP> ions to NaTi2(PO4)3. For this, the NaTi2(PO4)3/rGO microsphere composite was prepared <I>via</I> a facile spray drying method using a solution mixture of graphene oxide, NaH2PO4·2H2O, Ti(OC2H5)4 and NH4H2(PO4)3, in which all the components of the titanium were present as ionic species in order to facilitate the chemical bonding between NaTi2(PO4)3 and rGO in the composite. The NaTi2(PO4)3/rGO microsphere composite had a Ti–O–C bond between NaTi2(PO4)3 nanoparticles (<80 nm) and rGO and interconnected nanoporous structures. The NaTi2(PO4)3/rGO microsphere composite exhibited a near theoretical specific capacity of 133 mA h g<SUP>−1</SUP> at a 0.1 C-rate and excellent rate capability (70% capacity retention at a 50 C-rate) with very stable cycling performance (only 2% capacity loss after 200 cycles at a high rate of 10C). Furthermore, the energy density and power density of the NHC assembled with a NaTi2(PO4)3/rGO anode and an AC-based cathode are far better than those of other NHCs assembled using other metal oxide-based anodes and AC cathodes.</P></▼2>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼