RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Ginsenoside compound K reduces ischemia/reperfusion-induced neuronal apoptosis by inhibiting PTP1B-mediated IRS1 tyrosine dephosphorylation

        Suping Li,Jing Fu,Liang Yu,Qian Yu,Nengwei Yu,Fei Xu The Korean Society of Ginseng 2023 Journal of Ginseng Research Vol.47 No.2

        Background: Ginsenoside compound K (CK) stimulated activation of the PI3K-Akt signaling is one of the major mechanisms in promoting cell survival after stroke. However, the underlying mediators remain poorly understood. This study aimed to explore the docking protein of ginsenoside CK mediating the neuroprotective effects. Materials and methods: Molecular docking, surface plasmon resonance, and cellular thermal shift assay were performed to explore ginsenoside CK interacting proteins. Neuroscreen-1 cells and middle cerebral artery occlusion (MCAO) model in rats were utilized as in-vitro and in-vivo models. Results: Ginsenoside CK interacted with recombinant human PTP1B protein and impaired its tyrosine phosphatase activity. Pathway and process enrichment analysis confirmed the involvement of PTP1B and its interacting proteins in PI3K-Akt signaling pathway. PTP1B overexpression reduced the tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) after oxygen-glucose deprivation/reoxygenation (OGD/R) in neuroscreen-1 cells. These regulations were confirmed in the ipsilateral ischemic hemisphere of the rat brains after MCAO/R. Ginsenoside CK treatment reversed these alterations and attenuated neuronal apoptosis. Conclusion: Ginsenoside CK binds to PTP1B with a high affinity and inhibits PTP1B-mediated IRS1 tyrosine dephosphorylation. This novel mechanism helps explain the role of ginsenoside CK in activating the neuronal protective PI3K-Akt signaling pathway after ischemia-reperfusion injury.

      • SCIESCOPUSKCI등재

        Ginsenoside Rd protects cerebral endothelial cells from oxygen-glucose deprivation/reoxygenation induced pyroptosis via inhibiting SLC5A1 mediated sodium influx

        Li, Suping,Yu, Nengwei,Xu, Fei,Yu, Liang,Yu, Qian,Fu, Jing The Korean Society of Ginseng 2022 Journal of Ginseng Research Vol.46 No.5

        Background: Ginsenoside Rd is a natural compound with promising neuroprotective effects. However, the underlying mechanisms are still not well-understood. In this study, we explored whether ginsenoside Rd exerts protective effects on cerebral endothelial cells after oxygen-glucose deprivation/reoxygenation (OGD/R) treatment and its potential docking proteins related to the underlying regulations. Method: Commercially available primary human brain microvessel endothelial cells (HBMECs) were used for in vitro OGD/R studies. Cell viability, pyroptosis-associated protein expression and tight junction protein degradation were evaluated. Molecular docking proteins were predicted. Subsequent surface plasmon resonance (SPR) technology was utilized for validation. Flow cytometry was performed to quantify caspase-1 positive and PI positive (caspase-1+/PI+) pyroptotic cells. Results: Ginsenoside Rd treatment attenuated OGD/R-induced damage of blood-brain barrier (BBB) integrity in vitro. It suppressed NLRP3 inflammasome activation (increased expression of NLRP3, cleaved caspase-1, IL-1β and GSDMD-N terminal (NT)) and subsequent cellular pyroptosis (caspase-1+/PI + cells). Ginsenoside Rd interacted with SLC5A1 with a high affinity and reduced OGD/R-induced sodium influx and potassium efflux in HBMECs. Inhibiting SLC5A1 using phlorizin suppressed OGD/R-activated NLRP3 inflammasome and pyroptosis in HBMECs. Conclusion: Ginsenoside Rd protects HBMECs from OGD/R-induced injury partially via binding to SLC5A1, reducing OGD/R-induced sodium influx and potassium efflux, thereby alleviating NLRP3 inflammasome activation and pyroptosis.

      • Influence of the Donor Side of Photosystem II on the Photogeneration of Superoxide Radicals and Chlorophyll a Fluorescence

        Weng, Jun,Zhang, Suping,Pan, Jingxi,Jinxing, Chen,Xu, Chunhe Korean Society of Photoscience 2002 Journal of Photosciences Vol.9 No.2

        Direct EPR evidence of the photo-generation of superoxide radicals ( $O_2$$^{-.}$) was obtained by using spin trapping techniques in spinach photosystem II (PSII) membranes. $O_2$$^{-.}$ was detected by following the formation of 5-diethoxyphosphoryl-5-methyl-1 -pyrroline-N-oxide (DEPMPO) superoxide adducts, DEPMPO-OOH. The significant increase of the EPR signal amplitude of DEPMPO-OOH in N$H_2O$H-, CaC $l_2$- and NaCl-treated PSII membranes showed that the oxygen-evolving system has a close relation to the $O_2$$^{-.}$ production. PSII membranes with inactivated donor side could not prevent the $O_2$$^{-.}$ production efficiently. Treatments on PSII donor side also influence the maximum level and the kinetics of Chlorophyll (Chi) a fluorescence. Results suggested that manganese cluster and extrinsic proteins might affect Chi a fluorescence in ways different from that happens at the acceptor side of PSII.SII.SII.

      • KCI등재

        CircRNA circ_0067772 aggravates the malignant progression of cutaneous squamous cell carcinoma by regulating miR‑1238‑3p/ FOXG1 axis

        Xiaoqing Li,Yinghui Kong,He Li,Manyuan Xu,Ming Jiang,Weiguo Sun,Suping Xu 한국유전학회 2021 Genes & Genomics Vol.43 No.5

        Background Cutaneous squamous cell carcinoma (CSCC) is a severe malignancy derived from skin. Dysregulated circular RNAs (circRNAs) might play vital roles in tumor development. Objective Here, we aimed to explore the function of a novel circRNA circ_0067772 in CSCC. Methods Quantitative real-time PCR (qRT-PCR) or Western blot assay was performed to determine the expression of circ_0067772, microRNA (miR)-1238-3p and forkhead box protein G1 (FOXG1). Cell proliferation was assessed by Cell Counting Kit-8 (CCK-8) assay and colony formation assay. Transwell assay and wound healing assay were employed to examine cell metastasis. Flow cytometry was employed to monitor cell cycle and apoptosis. The target association between miR-1238-3p and circ_0067772 or FOXG1 was validated by dual-luciferase reporter assay. Moreover, role of circ_0067772 in vivo was investigated via xenograft model in nude mice. Results Circ_0067772 and FOXG1 were upregulated, while miR-1238-3p was downregulated in CSCC tissues and cells. Circ_0067772 knockdown conferred inhibitory efects on cell proliferation, migration and invasion of CSCC cells. MiR1238-3p served as a target of circ_0067772, whose silencing could reverse circ_0067772 knockdown-induced inhibitory impact on the malignant cellular behaviors. Circ_0067772 positively regulated FOXG1 expression by antagonizing miR1238-3p. Additionally, miR-1238-3p could repress CSCC cell proliferation, migration and invasion by targeting FOXG1. Also, circ_0067772 knockdown hindered CSCC tumor growth in vivo. Conclusion Our study identifed a novel oncogenic circRNA and the involvement of circ_0067772/miR-1238-3p/FOXG1 axis in CSCC development, providing a target for CSCC therapy.

      • KCI등재

        Changpingibacter yushuensis gen. nov., sp. nov., isolated from fluvial sediment in Qinghai Tibet Plateau of China

        Jiao Yifan,Zhang Sihui,Yang Jing,Lai Xin-He,Dong Kui,Cheng Yanpeng,Xu Mingchao,Zhu Wentao,Lu Shan,Jin Dong,Pu Ji,Huang Ying,Liu Liyun,Wang Suping,Xu Jianguo 한국미생물학회 2022 The journal of microbiology Vol.60 No.2

        Two facultatively anaerobic, short rod-shaped, non-motile, Gram-stain-positive, unknown bacterial strains (JY-X040T and JY-X174) were isolated from fluvial sediments of Tongtian River in Yushu Tibetan Autonomous Prefecture, Qinghai province, China. Cells formed translucent, gray, round and convex colonies, with a diameter of less than 0.5 mm after 5 days of incubation at 30°C on brain heart infusion-5% sheep blood agar. The 16S rRNA gene sequence similarity between strain JY-X040T and Fudania jinshanensis 313T is 93.87%. In the four phylogenetic trees constructed based on the 16S rRNA gene and 423 core genes, the two isolates form an independent branch, phylogenetically closest to F. jinshanensis 313T, but could not be classified as a member of the genus Fudania or any other genus of the family Arcanobacteriaceae. The DNA G + C content of strain JY-X040T was 57.8%. Calculation results of average nucleotide identity, digital DNADNA hybridization value and amino acid identity between strain JY-X040T and F. jinshanensis 313T are 69.9%, 22.9%, and 64.1%. The major cellular fatty acids were C16:0 (23%) and C18:1ω9c (22%). The cell-wall peptidoglycan type was A5α (L-Lys-L-Ala-L-Lys-D-Glu). The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and four unidentified components. The whole-cell sugars contained rhamnose and ribose. MK-10(H4) was the sole respiratory quinone. The minimum inhibitory concentration of streptomycin was 32 μg/ml. All physiological, biochemical, chemotaxonomic and genomic characteristics support that strains JY-X040T and JY-X174 represent members of a novel species in a new genus, Changpingibacter yushuensis gen. nov., sp. nov. The type strain is JY-X040T (GDMCC 1.1996T = KCTC 49514T).

      • KCI등재

        Agromyces laixinhei sp. nov. isolated from bat feces in China

        Cheng Yanpeng,Bai Yibo,Huang Yuyuan,Yang Jing,Lu Shan,Jin Dong,Pu Ji,Zheng Han,Li Junqin,Huang Ying,Wang Suping,Xu Jianguo 한국미생물학회 2021 The journal of microbiology Vol.59 No.5

        Three rod-shaped, Gram-stain-positive, and catalase-positive, phenotypically closely related isolates (HY052T, HY050, and HY045) were obtained from fecal samples collected from bats in Guangxi province and Chongqing city of China. Circular, smooth, light-yellow colonies appeared on brain heart infusion plate after 24–48 h incubation at 28°C. The optimal pH for growth was between 6.0 and 7.5. Based on 16S rRNA, the three isolates were phylogenetically related to Agromyces terreus DS-10T, Agromyces aureus AR33T, Agromyces salentinus 20-5T, Agromyces allii UMS-62T, Agromyces lapidis CD55T, and Agromyces italicus CD1T. Moreover, based on 296 core genes, the phylogenomic tree indicated that the three isolates clustered together, closest to Agromyces cerinus VKM Ac- 1340T and Agromyces fucosus VKM Ac-1345T but separated distantly from other Agromyces species. The average nucleotide identity values between strain HY052T and other Agromyces species ranged from 79.3% to 87.9%, lower than the 95–96% threshold. Furthermore, the genome of strain HY052T contains a circular chromosome of 3,437,203 bp with G + C content of 69.0 mol%. Main fatty acids were anteiso-C15:0 and anteiso-C17:0. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, and unidentified glycolipids. Rhamnose, ribose, and glucose were the primary cell wall sugars. The major peptidoglycan amino acids included alanine, glutamic acid, glycine, and 2,4-diaminobutyric acid. An additional remarkable difference from other Agromyces species is that MK-12 was the sole menaquinone in strain HY052T. Based on results from the polyphasic characterizations performed in this study, our isolates are proposed to be members of a novel species in genus Agromyces, named Agromyces laixinhei. The type strain is HY052T (= CGMCC 1.17175T = JCM 33695T).

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼