RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A SMA-based morphing flap: conceptual and advanced design

        Salvatore Ameduri,Antonio Concilio,Rosario Pecora 국제구조공학회 2015 Smart Structures and Systems, An International Jou Vol.16 No.3

        In the work at hand, the development of a morphing flap, actuated through shape memory alloy load bearing elements, is described. Moving from aerodynamic specifications, prescribing the morphed shape enhancing the aerodynamic efficiency of the flap, a suitable actuation architecture was identified, able to affect the curvature. Each rib of the flap was split into three elastic elements, namely “cells”, connected each others in serial way and providing the bending stiffness to the structure. The edges of each cell are linked to SMA elements, whose contraction induces rotation onto the cell itself with an increase of the local curvature of the flap airfoil. The cells are made of two metallic plates crossing each others to form a characteristic “X” configuration; a good flexibility and an acceptable stress concentration level was obtained non connecting the plates onto the crossing zone. After identifying the main design parameters of the structure (i.e. plates relative angle, thickness and depth, SMA length, cross section and connections to the cell) an optimization was performed, with the scope of enhancing the achievable rotation of the cell, its ability in absorbing the external aerodynamic loads and, at the same time, containing the stress level and the weight. The conceptual scheme of the architecture was then reinterpreted in view of a practical realization of the prototype. Implementation issues (SMA - cells connection and cells relative rotation to compensate the impressed inflection assuring the SMA pre-load) were considered. Through a detailed FE model the prototype morphing performance were investigated in presence of the most severe load conditions.

      • KCI등재

        A single slotted morphing flap based on SMA technology

        Salvatore Ameduri,Antonio Concilio,Rosario Pecora,Dimitrios Karagiannis 국제구조공학회 2016 Smart Structures and Systems, An International Jou Vol.17 No.5

        In this paper, the activities carried out within the EU funded Clean Sky Joint Technology Initiative (JTI GRA) Project and aimed at developing a morphing flap, are illustrated. The reference device is a regional aircraft single slotted flap, enhanced with deforming capabilities to obtain improved hyper-lift performance. The design started with the identification of the internal architecture, intended to allow camber variations. A concentrated-hinge architecture was selected, for its ability to fit different curvatures and for the possibility of easily realizing an \"armadillo-like\" configuration, then avoiding the use of a complicate deformable skin. The flap layout is made of segmented ribs, elastically hinged each other and span-wise connected by conventional spars. Relative rotations of the rib elements are forced by SMA structural actuators, i.e., cooperating in the external loads absorption. Super-elastic SMA are used to make up recovery elastic elements, necessary to regain the original shape after activation. These further elements in turn contribute to the overall flap rigidity. After assessing the hinge number and the size of the SMA active and passive elements, the advanced design phase was dealt with. It was aimed at solving manufacturing issues and producing the executive drawings. The realized demonstrator was finally tested in lab conditions to prove its functionality in terms of whether target shape actuation or attained shape preservation under loads. On the basis of the numerical results and the experimental outcomes, precious hints were obtained for further developments of the concept.

      • KCI등재

        Hinge rotation of a morphing rib using FBG strain sensors

        Monica Ciminello,Salvatore Ameduri,Antonio Concilio,Domenico Flauto,Fabio Mennella 국제구조공학회 2015 Smart Structures and Systems, An International Jou Vol.15 No.6

        An original sensor system based on Fiber Bragg Gratings (FBG) for the strain monitoring of an adaptive wing element is presented in this paper. One of the main aims of the SARISTU project is in fact to measure the shape of a deformable wing for performance optimization. In detail, an Adaptive Trailing Edge (ATE) is monitored chord- and span-wise in order to estimate the deviation between the actual and the desired shape and, then, to allow attaining a prediction of the real aerodynamic behavior with respect to the expected one. The integration of a sensor system is not trivial: it has to fit inside the available room and to comply with the primary issue of the FBG protection. Moreover, dealing with morphing structures, large deformations are expected and a certain modulation is necessary to keep the measured strain inside the permissible measure range. In what follows, the mathematical model of an original FBG-based structural sensor system is presented, designed to evaluate the chord-wise strain of an Adaptive Trailing Edge device. Numerical and experimental results are compared, using a proof-of-concept setup. Further investigations aimed at improving the sensor capabilities, were finally addressed. The elasticity of the sensor structure was exploited to enlarge both the measurement and the linearity range. An optimisation process was then implemented to find out an optimal thickness distribution of the sensor system in order to alleviate the strain level within the referred component.

      • SCIESCOPUS

        Fiber optic shape sensor system for a morphing wing trailing edge

        Ciminello, Monica,Ameduri, Salvatore,Concilio, Antonio,Dimino, Ignazio,Bettini, Paolo Techno-Press 2017 Smart Structures and Systems, An International Jou Vol.20 No.4

        The objective of this work is to present a conceptual design and the modelling of a distributed sensor system based on fiber optic devices (Fiber Bragg Grating, FBG), aimed at measuring span-wise and chord-wise variations of an adaptive (morphing) trailing edge. The network is made of two different integrated solutions for revealing deformations of the reference morphing structure. Strains are confined to typical values along the span (length) but they are expected to overcome standard ranges along the chord (width), up to almost 10%. In this case, suitable architectures may introduce proper modulations to keep the measured deformation low while preserving the information content. In the current paper, the designed monitoring system combines the use of a span-wise fiber reinforced patch with a chord-wise sliding beam. The two elements make up a closed grid, allowing the reconstruction of the complete deformed shape under the acceptable assumption that the transformation refers to regular geometry variations. Herein, the design logic and some integration issues are reported. Preliminary experimental test results are finally presented.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼