RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Investigation of lateral impact behavior of RC columns

        Özgür Anil,R. Tuğrul Erdem,Merve Nilay Tokgöz 사단법인 한국계산역학회 2018 Computers and Concrete, An International Journal Vol.22 No.1

        Reinforced concrete (RC) columns which are the main vertical structural members are exposed to several static and dynamic effects such as earthquake and wind. However, impact loading that is sudden impulsive dynamic one is the most effective loading type acting on the RC columns. Impact load is a kind of impulsive dynamic load which is ignored in the design process of RC columns like other structural members. The behavior of reinforced concrete columns under impact loading is an area of research that is still not well understood; however, work in this area continues to be motivated by a broad range of applications. Examples include reinforced concrete structures designed to resist accidental loading scenarios such as falling rock impact; vehicle or ship collisions with buildings, bridges, or offshore facilities; and structures that are used in high-threat or highhazard applications, such as military fortification structures or nuclear facilities. In this study, free weight falling test setup is developed to investigate the behavior effects on RC columns under impact loading. For this purpose, eight RC column test specimens with 1/3 scale are manufactured. While drop height and mass of the striker are constant, application point of impact loading, stirrup spacing and concrete compression strength are the experimental variables. The time-history of the impact force, the accelerations of two points and the displacement of columns were measured. The crack patterns of RC columns are also observed. In the light of experimental results, low-velocity impact behavior of RC columns were determined and interpreted. Besides, the finite element models of RC columns are generated using ABAQUS software. It is found out that proposed finite element model could be used for evaluation of dynamic responses of RC columns subjected to low-velocity impact load.

      • KCI등재

        Prediction of acceleration and impact force values of a reinforced concrete slab

        R. Tuğrul Erdem 사단법인 한국계산역학회 2014 Computers and Concrete, An International Journal Vol.14 No.5

        Concrete which is a composite material is frequently used in construction works. Properties and behavior of concrete are significant under the effect of different loading cases. Impact loading which is a sudden dynamic one may have destructive effects on structures. Testing apparatuses are designed to investigate the impact effect on test members. Artificial Neural Network (ANN) is a computational model that is inspired by the structure or functional aspects of biological neural networks. It can be defined as an emulation of biological neural system. In this study, impact parameters as acceleration and impact force values of a reinforced concrete slab are obtained by using a testing apparatus and essential test devices. Afterwards, ANN analysis which is used to model different physical dynamic processes depending on several variables is performed in the numerical part of the study. Finally, test and predicted results are compared and it’s seen that ANN analysis is an alternative way to predict the results successfully.

      • KCI등재

        Non-linear performance analysis of existing and concentric braced steel structures

        R. Tuğrul Erdem 국제구조공학회 2015 Steel and Composite Structures, An International J Vol.19 No.1

        Since there are several places located in active seismic zones in the world, serious damages and losses have happened due to major scaled earthquakes. Especially, structures having different irregularities have been severely damaged or collapsed during these seismic events. Behavior of existing structures under several loading conditions is not completely determined due to some uncertainties. This situation reveals the importance of design and analysis of structures under seismic effects. Several non-linear static procedures have been developed in recent years. Determination of the seismic safety of the existing structures and strengthening techniques are significant civil engineering problems Non-linear methods are defined in codes to determine the performance levels of structures more accurately. However, displacement based ones give more realistic results. These methods provide more reliable evaluation possibilities for existing structures with developing computer technology. In this study, non-linear performance analysis of existing and strengthened steel structures by X shaped bracing members with 3, 5 and 7 stories which have soft story irregularity is performed according to FEMA-356 and Turkish Earthquake Code-2007. Damage ratios of the structural members and global performance levels are determined as well as modal properties and story drift ratios after non-linear finite elements analysis for each structure.

      • KCI등재

        Experimental Investigation of Impact Behaviour of RC Slab with Different Reinforcement Ratios

        Tolga Yılmaz,Nevzat Kıraç,Özgür ANIL,R. Tuğrul Erdem,Gökhan Kaçaran 대한토목학회 2020 KSCE Journal of Civil Engineering Vol.24 No.1

        Reinforced concrete (RC) slabs may be exposed to the low-velocity impact load during their service periods. In low-velocity impact scenarios, the effect of strain rates has been remarkably higher than quasi-static loading because the loading duration is very short. Thus, structural responses and failure modes will be different. The present study aims to investigate dynamic response and failure modes of simply supported two-way RC slabs exposed to low-velocity impact load. In the experimental part of this study, nine RC slabs with the dimension of 1,000 × 1,000 × 80 mm were tested. The reinforcement ratio of RC slabs and the input impact energy applied to RC slabs were experimental variables investigated. A drop-weight test setup was utilized to apply impact load to RC slabs. By varying drop-height as 1,000, 1,250 and 1,500 mm, three different impact energies have been applied to RC slabs via a hammer of which weight is 84 kg. The time histories of the accelerations, displacements and impact loads were recorded. The dynamic responses obtained by tests and the failure modes observed has been interpreted in detail. Besides, a finite element model where explicit dynamic analysis is performed has been established for verification of the experimental results. There was observed good accordance between numerical and experimental results. Consequently, it is considered that the present finite element treatment can be used for the evaluation of the dynamic responses and failure modes of RC slabs exposed to low-velocity impact load.

      • Experimental investigation of impact behaviour of shear deficient RC beam to column connection

        Murat Aras,Tolga Yılmaz,Özlem Çalışkan,Özgür Anıl,R. Tuğrul Erdem,Turgut Kaya 국제구조공학회 2022 Structural Engineering and Mechanics, An Int'l Jou Vol.84 No.5

        Reinforced concrete (RC) structures may be subjected to sudden dynamic impact loads such as explosions occurring for different reasons, the collision of masses driven by rockfall, flood, landslide, and avalanche effect structural members, the crash of vehicles to the highway and seaway structures. Many analytical, numerical, and experimental studies focused on the behavior of RC structural elements such as columns, beams, and slabs under sudden dynamic impact loads. However, there is no comprehensive study on the behavior of the RC column-beam connections under the effect of sudden dynamic impact loads. For this purpose, an experimental study was performed to investigate the behavior of RC column-beam connections under the effect of low-velocity impact loads. Sixteen RC beam-column connections with a scale of 1/3 were manufactured and tested under impact load using the drop-weight test setup. The concrete compressive strength, shear reinforcement spacing in the beam, and input impact energy applied to test specimens were taken as experimental variables. The time histories of impact load acting on test specimens, accelerations, and displacements measured from the test specimens were recorded in experiments. Besides, shear and bending crack widths were measured. The effect of experimental variables on the impact behavior of RC beam-column connections has been determined and interpreted in detail. Besides, a finite element model has been established for verification and comparison of the experimental results by using ABAQUS software. It has been demonstrated that concrete strength, shear reinforcement ratio, and impact energy significantly affect the impact behavior of RC column-beam connections.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼