RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Secure and Robust Clustering for Quantized Target Tracking in Wireless Sensor Networks

        Mansouri, Majdi,Khoukhi, Lyes,Nounou, Hazem,Nounou, Mohamed The Korea Institute of Information and Commucation 2013 Journal of communications and networks Vol.15 No.2

        We consider the problem of secure and robust clustering for quantized target tracking in wireless sensor networks (WSN) where the observed system is assumed to evolve according to a probabilistic state space model. We propose a new method for jointly activating the best group of candidate sensors that participate in data aggregation, detecting the malicious sensors and estimating the target position. Firstly, we select the appropriate group in order to balance the energy dissipation and to provide the required data of the target in the WSN. This selection is also based on the transmission power between a sensor node and a cluster head. Secondly, we detect the malicious sensor nodes based on the information relevance of their measurements. Then, we estimate the target position using quantized variational filtering (QVF) algorithm. The selection of the candidate sensors group is based on multi-criteria function, which is computed by using the predicted target position provided by the QVF algorithm, while the malicious sensor nodes detection is based on Kullback-Leibler distance between the current target position distribution and the predicted sensor observation. The performance of the proposed method is validated by simulation results in target tracking for WSN.

      • KCI등재

        Secure and Robust Clustering for Quantized Target Tracking in Wireless Sensor Networks

        Majdi Mansouri,Lyes Khoukhi,Hazem Nounou,Mohamed Nounou 한국통신학회 2013 Journal of communications and networks Vol.15 No.2

        We consider the problem of secure and robust clustering for quantized target tracking in wireless sensor networks (WSN) where the observed system is assumed to evolve according to a probabilistic state space model. We propose a new method for jointly activating the best group of candidate sensors that participate in data aggregation, detecting the malicious sensors and estimating the target position. Firstly, we select the appropriate group in order to balance the energy dissipation and to provide the required data of the target in the WSN. This selection is also based on the transmission power between a sensor node and a cluster head. Secondly, we detect the malicious sensor nodes based on the information relevance of their measurements. Then, we estimate the target position using quantized variational filtering (QVF) algorithm. The selection of the candidate sensors group is based on multi-criteria function, which is computed by using the predicted target position provided by the QVF algorithm, while themalicious sensor nodes detection is based on Kullback-Leibler distance between the current target position distribution and the predicted sensor observation. The performance of the proposed method is validated by simulation results in target tracking for WSN.

      • Associations between Single Nucleotide Polymorphisms of COX-2 and MMP-2 Genes and Colorectal Cancer Susceptibility in the Saudi Population

        Shalaby, Manal Ali,Nounou, Howaida Attia,Alanazi, Mohammad Saud,Alharby, Othman,Azzam, Nahla,Saeed, Hesham Mahmoud Asian Pacific Journal of Cancer Prevention 2014 Asian Pacific journal of cancer prevention Vol.15 No.12

        Background: It has been reported that COX-2 expression is associated with MMP-2 expression in thyroid and breast cancers, suggesting that MMPs are linked to COX-2-mediated carcinogenesis. Several polymorphisms within the MMP2 promoter region have been reported in cases with oncogenesis and tumor progression, especially in colorectal carcinogenesis. Materials and Methods: This research evaluated risk of association of the SNPs, including genes for COX-2 (AIG transition at +202) and MMP-2 (Crr transition at-1306), with colorectal cancer in 125 patients and 125 healthy controls. Results and Conclusions: Our data confirmed that MMP2 C-1306 T mutations were significantly more common in colon cancer patients than in our control Saudi population; p=O.0121. On the other hand in our study, there was no significant association between genotype distribution ofthe COX2 polymorphism and colorectal cancer; p=0.847. An elevated frequency ofthe mutated genotype in the control group as compared to the patients subjects indeed suggested that this polymorphism could decrease risk in the Saudi population. Our study confirmed that the polymorphisms that could affect the expressions of MMP-2 and COX-2 the colon cancer patients were significantly higher than that in the COX-2 negative group. The frequency of individuals with MMP2 polymorphisms in colon cancer patients was higher than individuals with combination of COX2 and MMP2 polymorphisms. Our study confirmed that individuals who carried the polymorphisms that could affect the expressions ofCOX2 are more susceptible to colon cancer. MMP2 regulatory polymorphisms could be considered as protective; further studies need to confirm the results with more samples and healthy subjects.

      • KCI등재

        A Nonparametric Approach to Design Fixed-order Controllers for Systems with Constrained Input

        Sofiane Khadraoui,Hazem Nounou 제어·로봇·시스템학회 2018 International Journal of Control, Automation, and Vol.16 No.6

        This paper presents an approach for designing fixed-structure controllers for input-constrained linear systems using frequency domain data. In conventional control approaches, a plant model is needed to design a suitable controller that meets some user-specified performance specifications. Mathematical models can be built based on fundamental laws or from a set of measurements. In both cases, it is difficult to find a simple and reliable model that completely describes the system behavior. Hence, errors associated with the plant modeling stage may contribute to the degradation of the desired closed-loop performance. Due to the fact that the modeling stage can be viewed only as an intermediate step introduced for the controller design, the concept of data-based control design has been introduced, where controllers are directly designed from measurements. Most existing data-based control approaches are developed for linear systems, which limit their application to systems with nonlinear phenomena. An important non-smooth nonlinearity observed in practical applications is the input saturation, which usually limits the system performance. Here, we attempt to develop a nonparametric approach to design controllers from frequency-domain data by taking into account input constraints. Two practical applications of the proposed method are presented to demonstrate its efficacy.

      • Cytochrome P450 1A1, 2E1 and GSTM1 Gene Polymorphisms and Susceptibility to Colorectal Cancer in the Saudi Population

        Saeed, Hesham Mahmoud,Alanazi, Mohammad Saud,Nounou, Howaida Attia,Shalaby, Manal Ali,Semlali, Abdelhabib,Azzam, Nahla,Aljebreen, Abdeulrahan,Alharby, Othman,Parine, Narasimha Reddy,Shaik, Jilani,Maha Asian Pacific Journal of Cancer Prevention 2013 Asian Pacific journal of cancer prevention Vol.14 No.6

        Background: The Saudi population has experienced a sharp increase in colorectal and gastric cancer incidences within the last few years. The relationship between gene polymorphisms of xenobiotic metabolizing enzymes and colorectal cancer (CRC) incidence has not previously investigated among the Saudi population. The aim of the present study was to investigate contributions of CYP1A1, CYP2E1, and GSTM1 gene polymorphisms. Materials and Methods: Blood samples were collected from CRC patients and healthy controls and genotypes were determined by polymerase chain reaction restriction fragment length polymorphism and sequencing. Results and Conclusions: $CYP2E1^*6$ was not significantly associated with CRC development (odd ratio=1.29; confidence interval 0.68-2.45). A remarkable and statistically significant association was observed among patients with $CYP1Awt/^*2A$ (odd ratio=3.65; 95% confidence interval 1.39-9.57). The $GSTM1^*0/^*0$ genotype was found in 2% of CRC patients under investigation. The levels of CYP1A1, CYP2E1 and GSTM1 mRNA gene expression were found to be 4, 4.2 and 4.8 fold, respectively, by quantitative real time PCR. The results of the present case-control study show that the studied Saudi population resembles Caucasians with respect to the considered polymorphisms. Investigation of genetic risk factors and susceptibility gene polymorphisms in our Saudi population should be helpful for better understanding of CRC etiology.

      • KCI등재

        Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial?

        Fatema El-Amrawy,Mohamed Ismail Nounou 대한의료정보학회 2015 Healthcare Informatics Research Vol.21 No.4

        The new wave of wireless technologies, fitness trackers, and body sensor devices can have great impact on healthcare systems and the quality of life. However, there have not been enough studies to prove the accuracy and precision of these trackers. The objective of this study was to evaluate the accuracy, precision, and overall performance of seventeen wearable devices currently available compared with direct observation of step counts and heart rate monitoring. Methods: Each participant in this study used three accelerometers at a time, running the three corresponding applications of each tracker on an Android or iOS device simultaneously. Each participant was instructed to walk 200, 500, and 1,000 steps. Each set was repeated 40 times. Data was recorded after each trial, and the mean step count, standard deviation, accuracy, and precision were estimated for each tracker. Heart rate was measured by all trackers (if applicable), which support heart rate monitoring, and compared to a positive control, the Onyx Vantage 9590 professional clinical pulse oximeter. Results: The accuracy of the tested products ranged between 79.8% and 99.1%, while the coefficient of variation (precision) ranged between 4% and 17.5%. MisFit Shine showed the highest accuracy and precision (along with Qualcomm Toq), while Samsung Gear 2 showed the lowest accuracy, and Jawbone UP showed the lowest precision. However, Xiaomi Mi band showed the best package compared to its price. Conclusions: The accuracy and precision of the selected fitness trackers are reasonable and can indicate the average level of activity and thus average energy expenditure.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼