RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Chemical Changes during Ensilage and In sacco Degradation of Two Tropical Grasses: Rhodesgrass and Guineagrass Treated with Cell Wall-degrading Enzymes

        Zhu, Yu,Nishino, Naoki,Xusheng, Guo Asian Australasian Association of Animal Productio 2011 Animal Bioscience Vol.24 No.2

        Effects of the cell wall-degrading enzymes derived from Acremonium cellulolyticus and Trichoderma viride on the silage fermentation and in sacco degradation of tropical grasses i.e. rhodesgrass (Chloris gayana Kunth. cv. Callide) and guineagrass (Panicum maximum Jacq. cv. Natsukaze) were investigated in laboratory-scale experiments. These two grasses were either treated with or without the enzymes before ensiling. Untreated rhodesgrass produced acetate fermentation silage (lactate, $13.0\;g\;kg^{-1}$ DM; acetate, $38.7\;g\;kg^{-1}$ DM) with high final pH value and $NH_3$-N content (5.84 and $215\;g\;kg^{-1}$ DM). Addition of enzymes significantly increased (p<0.01) the lactate production (lactate, 45.6; acetate, $34.0\;g\;kg-^{1}$ DM) and decreased (p<0.01) the pH and $NH_3$-N (4.80 and $154\;g\;kg^{-1}$ DM) in the ensiled forages when compared with the control silages. Untreated guineagrass was successfully preserved with a high lactate proportion (lactate, 45.5; acetate, $24.1\;g\;kg^{-1}$ DM), and the addition of enzymes further enhanced the desirable fermentation (lactate, $57.5\;g\;kg^{-1}$ DM; acetate, $19.4\;g\;kg^{-1}$ DM). The content of NDF was lowered (p<0.05) by enzymes in both silages, but the extent appeared greater in the enzyme-treated rhodesgrass (rhodesgrass, $48\;g\;kg^{-1}$ DM; guineagrass, $21\;g\;kg^{-1}$ DM). Changes in the kinetics of in sacco degradation showed that enzyme treatment increased (p<0.01) the rapidly degradable DM (rhodesgrass, 299 vs. $362\;g\;kg^{-1}$ DM; guineagrass, 324 vs. $343\;g\;kg^{-1}$ DM) but did not influence the potential degradation, lag time and degradation rate of DM and NDF in the two silages.

      • SCIESCOPUSKCI등재

        Effects of Ensiling Fermentation and Aerobic Deterioration on the Bacterial Community in Italian Ryegrass, Guinea Grass, and Whole-crop Maize Silages Stored at High Moisture Content

        Li, Yanbing,Nishino, Naoki Asian Australasian Association of Animal Productio 2013 Animal Bioscience Vol.26 No.9

        The effects of storage period and aerobic deterioration on the bacterial community were examined in Italian ryegrass (IR), guinea grass (GG), and whole-crop maize (WM) silages. Direct-cut forages were stored in a laboratory silo for 3, 7, 14, 28, 56, and 120 d without any additives; live counts, content of fermentation products, and characteristics of the bacterial community were determined. 2,3-Butanediol, acetic acid, and lactic acid were the dominant fermentation products in the IR, GG, and WM silages, respectively. The acetic acid content increased as a result of prolonged ensiling, regardless of the type of silage crop, and the changes were distinctively visible from the beginning of GG ensiling. Pantoea agglomerans, Rahnella aquatilis, and Enterobacter sp. were the major bacteria in the IR silage, indicating that alcoholic fermentation may be due to the activity of enterobacteria. Staphylococcus sciuri and Bacillus pumilus were detected when IR silage was spoiled, whereas between aerobically stable and unstable silages, no differences were seen in the bacterial community at silo opening. Lactococcus lactis was a representative bacterium, although acetic acid was the major fermentation product in the GG silage. Lactobacillus plantarum, Lactobacillus brevis, and Morganella morganii were suggested to be associated with the increase in acetic acid due to prolonged storage. Enterobacter cloacae appeared when the GG silage was spoiled. In the WM silage, no distinctive changes due to prolonged ensiling were seen in the bacterial community. Throughout the ensiling, Weissella paramesenteroides, Weissella confusa, and Klebsiella pneumoniae were present in addition to L. plantarum, L. brevis, and L. lactis. Upon deterioration, Acetobacter pasteurianus, Klebsiella variicola, Enterobacter hormaechei, and Bacillus gibsonii were detected. These results demonstrate the diverse bacterial community that evolves during ensiling and aerobic spoilage of IR, GG, and WM silages.

      • KCI등재

        Valsalva Aneurysm Filled with Thrombi Mimicking a Cardiac Tumor

        Yasuharu Lee,Naoki Mori,Daisuke Nakamura,Takahiro Yoshimura,Masayuki Taniike,Nobuhiko Makino,Hiroyasu Kato,Yasuyuki Egami,Ryu Shutta,Jun Tanouchi,Yoshio Yamada,Masami Nishino 대한심장학회 2012 Korean Circulation Journal Vol.42 No.12

        A Valsalva aneurysm filled with thrombi can be difficult to diagnose, because it mimics a cardiac tumor. Both cardiac magnetic resonance imaging (MRI) and transesophageal echocardiogram (TEE) were performed on a patient who showed a low-echoic mass located between the atrial septum and the non-coronary sinus. Based on MRI findings allowing tissue characterization and the accurate location of the mass and the TEE findings of an irregular surface of the mass and a partial defect in the edge of the non-coronary sinus, we diagnosed the mass as a thrombosed Valsalva aneurysm that had perforated the inter-atrial septum. The operative findings coincided with the preoperative di-agnosis. Both MRI and TEE are useful for diagnosing this condition.

      • KCI등재

        An investigation of seasonal variations in the microbiota of milk, feces, bedding, and airborne dust

        Nguyen Thuong Thi,Wu Haoming,Nishino Naoki 아세아·태평양축산학회 2020 Animal Bioscience Vol.33 No.11

        Objective: The microbiota of dairy cow milk varies with the season, and this accounts in part for the seasonal variation in mastitis-causing bacteria and milk spoilage. The microbiota of the cowshed may be the most important factor because the teats of a dairy cow contact bedding material when the cow is resting. The objectives of the present study were to determine whether the microbiota of the milk and the cowshed vary between seasons, and to elucidate the relationship between the microbiota. Methods: We used 16S rRNA gene amplicon sequencing to investigate the microbiota of milk, feces, bedding, and airborne dust collected at a dairy farm during summer and winter. Results: The seasonal differences in the milk yield and milk composition were marginal. The fecal microbiota was stable across the two seasons. Many bacterial taxa of the bedding and airborne dust microbiota exhibited distinctive seasonal variation. In the milk microbiota, the abundances of Staphylococcaceae, Bacillaceae, Streptococcaceae, Microbacteriaceae, and Micrococcaceae were affected by the seasons; however, only Micrococcaceae had the same seasonal variation pattern as the bedding and airborne dust microbiota. Nevertheless, canonical analysis of principle coordinates revealed a distinctive group comprising the milk, bedding, and airborne dust microbiota. Conclusion: Although the milk microbiota is related to the bedding and airborne dust microbiota, the relationship may not account for the seasonal variation in the milk microbiota. Some major bacterial families stably found in the bedding and airborne dust microbiota, e.g., Staphylococcaceae, Moraxellaceae, Ruminococcaceae, and Bacteroidaceae, may have greater influences than those that varied between seasons.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼