RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Enhanced protective immune responses against Salmonella Enteritidis infection by Salmonella secreting an Escherichia coli heat-labile enterotoxin B subunit protein

        Nandre, R.M.,Jawale, C.V.,Lee, J.H. Pergamon Press 2013 Comparative immunology, microbiology and infectiou Vol.36 No.5

        Escherichia coli heat-labile enterotoxin B subunit (LTB) protein is a potent mucosal adjuvant. In this study, the effect of an attenuated Salmonella secreting LTB protein as an adjuvant strain (JOL1228) for a live Salmonella Enteritidis (SE) vaccine candidate (JOL919) was evaluated. In a single immunization experiment, chickens immunized with a mixture of JOL919 (5 parts) and JOL1228 (1 part) showed enhanced mucosal and cellular immune responses and efficient protection against salmonellosis as compared to those unimmunized control chickens. In further analysis, chickens were primed at one day of age and were boosted at the fifth week of age to prolong immune responses and to maximize the protection efficacy against salmonellosis. The immunized groups B (prime and booster with JOL919), C (prime with JOL919-JOL1228 mixture and booster with JOL919), and D (prime and booster with JOL919-JOL1228 mixture) showed significantly higher humoral and cellular immune responses as compared to those in the unimmunized control group A. In addition, immunized groups C and D showed fewer gross lesions in the liver and spleen and a lower number of SE-positive organs, with the lowest bacterial counts in the SE challenge strain as compared to the control group. These results indicate that SE vaccination with the LTB strain can have an adjuvant effect on the vaccine candidate by enhancing immune responses, and that a prime-boost strategy with the addition of the adjuvant strain can efficiently protect birds against salmonellosis.

      • A genetically engineered derivative of Salmonella Enteritidis as a novel live vaccine candidate for salmonellosis in chickens

        Nandre, R.M.,Matsuda, K.,Chaudhari, A.A.,Kim, B.,Lee, J.H. British Veterinary Association [etc] ; W.B. Saunde 2012 Research in veterinary science Vol.93 No.2

        To construct a novel live Salmonella Enteritidis (SE) vaccine candidate, SE was genetically engineered using the allelic exchange method to delete two virulence genes, lon and cpxR. The lon gene deletion is essential to impair Salmonella replication and avoid overwhelming systemic disease in the host. The cpxR gene deletion is needed to enhance the ability of bacteria to adhere and invade the host cell. Scanning electron microscopy revealed that the derivatives JOL917 (Δlon), JOL918 (ΔcpxR), and JOL919 (Δlon/ΔcpxR) had increased surface fimbrial filamentous structures. Significant elevations of extracellular polysaccharide and FimA expression were observed for the derivatives compared to the parental wild type JOL860, while biochemical properties of the derivatives were not altered. In the safety examination by inoculation of the derivatives in chickens, gross lesion scores of the liver, spleen, kidney, small intestine and caecal tonsils were moderate in the JOL917 and JOL918 groups, and significantly lower in the JOL919 group than those of the JOL860. Bacterial counts from the spleen and caeca of the JOL917 and JOL918 groups were moderate, and significantly reduced in the JOL919 group compared to the JOL860 group. In addition, only the JOL919 group showed significantly lower bacterial counts in the faecal samples than those of the JOL860 group. Significant elevations of IgG and secretory IgA levels observed in the derivative groups, while the JOL919 and JOL860 groups showed a potent lymphocyte proliferation response as compared to those of the control group. In the protection efficacy examination, JOL919 immunized group showed significantly lower depression, lower gross lesion in the liver and spleen, and lower number of the SE positive internal organs than those of the control group against a virulent wild type SE challenge.

      • SCISCIESCOPUS

        Generation of a safe Salmonella Gallinarum vaccine candidate that secretes an adjuvant protein with immunogenicity and protective efficacy against fowl typhoid.

        Nandre, R M,Lee, J H World Veterinary Poultry Association 2014 Avian pathology Vol.43 No.2

        <P>We constructed a live, attenuated Salmonella Gallinarum (SG) that secretes heat-labile enterotoxin B subunit protein (LTB), and evaluated this strain as a new vaccine candidate by assessing its safety, immunogenicity and protective efficacy against fowl typhoid. An asd(+) p15A ori low-copy plasmid containing eltB encoding LTB was transformed into a δlonδcpxRδasd SG (JOL967) to construct the candidate, JOL1355. In Experiments 1 and 2, birds were orally immunized with JOL1355 at 4 weeks of age, while control birds were inoculated with sterile phosphate-buffered saline. In Experiment 2, the birds of both groups were orally challenged with a virulent SG at 8 weeks of age. In Experiment 1, examination for safety revealed that the immunized group did not show any bacterial counts of the vaccine candidate in the liver and spleen. Birds immunized with the vaccine candidate showed a significant increase in systemic IgG and mucosal secretory IgA levels in Experiment 2. In addition, the lymphocyte proliferation response and the numbers of CD3(+)CD4(+) and CD3(+)CD8(+) T cells were also significantly elevated in the immunized group, which indicated that the candidate also induced cellular immune responses. In the protection assay, efficient protection with only 16% mortality in the immunized group was observed against challenge compared with 76% mortality in the control group. These results indicate that the live, attenuated SG secreting LTB can be a safe vaccine candidate. In addition, it can induce humoral and cellular immune responses and can efficiently reduce mortality of birds exposed to fowl typhoid.</P>

      • Cross-protection against Salmonella Typhimurium infection conferred by a live attenuated Salmonella Enteritidis vaccine.

        Nandre, Rahul M,Lee, Dajeong,Lee, John Hwa Canadian Veterinary Medical Association = Associat 2015 Canadian journal of veterinary research Vol.79 No.1

        <P>In this study, a genetically engineered live attenuated Salmonella Enteritidis (SE) vaccine was evaluated for its ability to protect against Salmonella Typhimurium (ST) infection in chickens. The birds were orally primed with the vaccine on the 1st day of life and given an oral booster at 5 wk of age. Control birds were orally inoculated with phosphate-buffered saline. Both groups of birds were orally challenged with a virulent ST strain at 9 wk of age. Compared with the control chickens, the vaccinated chickens had significantly higher levels of systemic IgG and mucosal IgA against specific ST antigens and a significantly greater lymphoproliferative response to ST antigens. The excretion of ST into the feces was significantly lower in the vaccinated group than in the control group on days 9 and 13 d after challenge. In addition, the vaccinated group had significantly fewer pronounced gross lesions in the liver and spleen and lower bacterial counts in the internal organs than the control group after challenge. These data indicate that genetically engineered live attenuated SE may induce humoral and cellular immune responses against ST antigens and may confer protection against virulent ST challenge.</P>

      • SCISCIESCOPUS

        Inhibition of Salmonella-induced apoptosis as a marker of the protective efficacy of virulence gene-deleted live attenuated vaccine

        Kamble, N.M.,Nandre, R.M.,Lee, J.H. Elsevier 2016 Veterinary immunology and immunopathology Vol.169 No.-

        <P>Vaccination is one of the best protection strategies against Salmonella infection in humans and chickens. Salmonella bacteria must induce apoptosis prior to initiating infection, pathogenesis and evasion of host immune responses. In this study, we evaluated the efficacy of vaccinating chickens against Salmonella Enteritidis (SE) using a vaccine candidate strain (JOL919), constructed by deleting the Ion and cpxR genes from a wild-type SE using an allelic exchange method. In present study day old chickens were inoculated with 1 x 10(7) cfu (colony forming unit) of JOL919 per os. We measured cell-mediated immunity, protective efficacy and extent of apoptosis induction in splenocytes. Seven days post-immunization, the number of CD3+CD4+ and CD3+ CD8+ T cells was significantly higher in the immunized group compared to the control group, indicating a significant augmentation of systemic immune response. The internal organs of chickens immunized with JOL919 had a significantly lower challenge-strain recovery, indicating effective protection and clearance of the challenge strain. Post-challenge, the number of apoptotic cells in the immunized group was significantly lower than in the control group. Additionally, AV/PI (Annexin V/propidium iodide) staining was performed to differentiate between apoptotic cells and necrotic cells, which corroborated TUNEL-assay (terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling) results. The proportions of AV+/PI- and AV+/PI+ cells, which represent the proportions of early apoptotic and late apoptotic/early necrotic cells present, respectively, were significantly lower in the immunized group. Our findings suggest that the apoptotic splenocytes in immunized chickens significantly decreased in number, which occurred concomitantly with a significant rise in systemic immune response and bacterial clearance. This suggests that inhibition of apoptosis may be a marker of protection efficacy in immunized chickens. (C) 2015 Elsevier B.V. All rights reserved.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼