RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Consumption of a Leuconostoc holzapfeliienriched synbiotic beverage alters the composition of the microbiota and microbial extracellular vesicles

        Jinho Yang,Andrea McDowell,Eun Kyoung Kim,Hochan Seo,Kyujin Yum,Won Hee Lee,Young-Koo Jee,김윤근 생화학분자생물학회 2019 Experimental and molecular medicine Vol.51 No.-

        Synbiotics, the combination of probiotics and prebiotics, are known to confer health benefits via intestinal microbiota modulation. However, significant intestinal microbiota alterations can be difficult to determine in intervention studies based on solely bacterial stool metagenomic analysis. Intestinal microbiota constituents secrete 20–200-nm-sized extracellular vesicles (EVs) containing microbial DNA, proteins, and lipids that are distributed throughout the body, providing an alternative target for microbiota metagenomic analysis. Here, we determined the impact of a synbiotic beverage enriched with the kimchi-derived bacterium Leuconostoc holzapfelii (L. holzapfelii) on the intestinal microbiota and local and circulatory microbiota-derived EV composition of healthy Korean adults. We isolated microbial DNA from stool bacteria, stool EVs, and urinary EVs and conducted next-generation sequencing of the 16S rDNA V3–V4 regions before and after synbiotic consumption. The species diversity of circulating urinary EVs was significantly increased after synbiotic consumption, while stool bacterial and EV diversity remained unchanged. Furthermore, we found that while a single genus was decreased among the stool bacteria constituents, stool EVs and urinary EVs showed significant alterations in four and eight genera, respectively. Blood chemistry assays revealed that synbiotic consumption significantly lowered aspartate aminotransferase (AST) serum levels, particularly in subjects with starting levels above the normal range (>40 UI/L). In conclusion, the L. holzapfelii-enriched synbiotic beverage greatly altered serum AST levels and microbial EV composition in urine and stool, while only minor changes were observed in the gut microbiota composition. Based on these findings, we suggest the potential use of microbiota-derived EVs as surrogate markers in future predictive diagnosis studies.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼